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A graduate class, TT17
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Textbook (weeks 1–4): Logic for Philosophy, Ted Sider (OUP)

Webpage: jamesstudd.net/modallogic

I. Brief review of propositional logic (PL)

I.1. Official Syntax (LfP 2.1)

The language of PL has the following primitive vocabulary:

• Connectives: „, Ñ

• Infinitely many sentence letters: P,Q,R, . . . (with or without numerical subscripts)

• Parentheses: (, )

Well-formed formulas (wffs, alias: formulas, sentences) are defined as follows:

Definition I.1.1 (PL-wff, LfP 26).

• If α is a sentence letter, α is a PL-wff

• If φ and ψ are PL-wffs, then „φ and pφÑ ψq are also PL-wffs

• Only strings that can be shown to be PL-wffs using the above clauses are PL-wffs

Worked Example A.

According to the letter of the definition, which of the following strings are PL-wffs?

Q „pφÑ ψq „„„„P
P Ñ Q „p„RÑ Q4q pP ^„Qq
pP5 Ñ Q17q „p„P q „pp„P Ñ Qq Ñ Rq
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I.2. Unofficial Syntax

Unless we’re specifically concerned with syntactic matters, we’ll usually permit ourselves to
be looser about syntax.

Unofficial connectives (LfP 27)

To make writing down formulas easier we help ourselves to the following abbreviations in
the metalanguage:

• pφ^ ψq is short for „pφÑ „ψq

• pφ_ ψq is short for p„φÑ ψq

• pφØ ψq is short for pφÑ ψq ^ pψ Ñ φq

Note. Here, following Sider, we differ from the Logic Manual, which takes all five connectives
as primitive.

Remark. Working with a short list of official connectives tends to make theory harder but
metatheory easier.

Bracketing conventions

We’ll apply standard bracketing conventions, mostly omitting outer brackets. (See e.g. the
Logic Manual.)

Worked Example B.

Write down the following in primitive notation:

„pP _Qq P ^„Q pP Ø Qq
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I.3. Semantics: interpretations and valuations (LfP 2.3)

Definition I.3.1 (LfP 29). A PL-interpretation is a function I that assigns each sentence
letter a truth value, either 1 (‘true’) or 0 (‘false’).

Definition I.3.2 (LfP 30). For any PL-interpretation I , the PL-valuation for I —symbolised
VI —is the (unique) function that assigns 1 or 0 to each wff as follows:

• VI pαq “ I pαq, for each sentence letter α

• VI pφÑ ψq “ 1 iff VI pφq “ 0 or VI pψq “ 1

• VI p„φq “ 1 iff VI pφq “ 0

Remark. I’ll often read “VI pφq “ 1” as “φ is true in I ”. Given their definitions, this
secures the expected truth-conditions for our unofficial connectives:

• VI pφ_ ψq “ 1 iff VI pφq “ 1 or VI pψq “ 1

• VI pφ^ ψq “ 1 iff VI pφq “ 1 and VI pψq “ 1

• VI pφØ ψq “ 1 iff VI pφq “ VI pψq

I.4. Semantics: validity and consequence

Definition I.4.1 (LfP 34).

• A sentence φ is PL-valid iff for every interpretation I , VI pφq “ 1.

• A sentence φ is a semantic consequence of a set of sentences Γ iff VI pφq “ 1 for every
interpretation I such that VI pγq “ 1 for each γ P Γ.

Warning. Even in logic, terminology varies from source to source:

• When φ is valid, φ is also sometimes called a tautology or a logical truth (and, in
symbols, we write (PL φ).

Note that, unlike some authors, Sider reserves ‘valid’ for formulas (not arguments).

• Semantic consequence is also frequently called ‘entailment’ (symbolised Γ (PL φ).
Although some authors use entailment for mere necessary implication.

Remark. Semantic consequence can be re-characterised in terms of ‘satisfaction’. Say that
I satisfies:

• a sentence φ if VI pφq “ 1

• a set Γ if VI pγq “ 1 for each γ P Γ.

Then Γ ( φ iff every interpretation that satisfies Γ also satisfies φ.
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I.5. Establishing validity (LfP 2.4)

Truth-tables

Recall that we can establish validity and non-validity using truth-tables.

Worked Example C. Use truth tables to demonstrate the following:

(i) ( pφÑ pψ Ñ φqq (ii) „ψ, φÑ ψ ( „φ

Informal semantic arguments

Truth-tables are fine for PL. But they won’t work when we come to modal logic. So let’s
introduce another means for establishing validity.

• To show ( φ, give a semantic argument to show that the supposition that VI pφq “ 0
leads to a contradiction (using the truth clauses in the definition of a valuation)

• To show φ1, . . . , φn ( ψ, give a semantic argument to show that the suppositions that
VI pφ1q “ ¨ ¨ ¨ “ VI pφnq “ 1 and VI pψq “ 0 jointly lead to a contradiction

Worked Example D. Give informal semantic arguments to demonstrate the following:

(i) ( pφÑ pψ Ñ φqq (ii) „ψ, φÑ ψ ( „φ

See also LfP, Examples 2.2 and 2.3, for further worked examples.

Exercise 1. Give an informal semantic argument to show that:

( pφÑ pψ Ñ χqq Ñ ppφÑ ψq Ñ pφÑ χqq

(Don’t use truth tables.)

(Proof theory: deferred until week 2!)
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II. Towards modal propositional logic (MPL)

II.1. Expressive strength and weakness in PL (cf. LfP 3.1)

Definition II.1.1. An n-ary truth function is a function that maps each n-tuple of truth
values to a truth value (and is otherwise undefined).

Remark. An n-ary truth function is uniquely represented by the corresponding truth table

Example. For example the truth tables below characterise binary truth functions f^
and fÐ

t1 t2 f^pt1, t2q fÐpt1, t2q
1 1 1 1
1 0 0 1
0 1 0 0
0 0 0 1

Definition II.1.2 (LfP 68). Let f be an n-ary truth function. Let φpP1, . . . , Pnq be a PL-
wff which contains P1, . . . , Pn as its only sentence letters. Then φpP1, . . . , Pnq symbolizes (or
expresses) f iff, for each PL-interpretation I :

VI pφpP1 . . . , Pnqq “ fpI pP1q, . . . ,I pPnqq

Remark. In other words, φpP1, . . . , Pnq symbolises a truth function f if they have the same
truth table. e.g. P1 ^ P2 and P2 Ñ P1 symbolise f^ and fÐ.

Fact II.1.3. Every n-ary truth function is symbolised by a PL-sentence φpP1, . . . , Pnq.

Fact II.1.4. Every PL-sentence φpP1, . . . , Pnq symbolises an n-ary truth function.

Remark. Fact 1 demonstrates that PL has maximal expressive strength when it comes to
symbolising truth-functions. But Fact 2 shows it goes no further.

This shows that we cannot adequately capture non-truth-functional English connectives such
as ‘Tim knows that P ’ or ‘It could be the case that P ’.

To capture these, we need connectives whose semantic contribution cannot be summarised
in a truth table.
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II.2. Syntax (LfP 6.1)

The syntax is just like PL except that we add a new unary connective 2 (read: ‘box’ or ‘it
is necessary that’) which functions syntactically just like negation.

Official Syntax

The language of PL has the following primitive vocabulary:

• Connectives: „, Ñ, 2

• Infinitely many sentence letters: P,Q,R, . . . (with or without numerical subscripts)

• Parentheses: (, )

Definition II.2.1 (MPL-wff, LfP 135).

• If α is a sentence letter, α is a MPL-wff

• If φ and ψ are MPL-wffs, then „φ, pφÑ ψq and 2φ are also MPL-wffs

• Only strings that can be shown to be MPL-wffs using the above clauses are MPL-wffs

Unofficial connective

• 3φ is short „2„φ. (3 may be read ‘diamond’ or ‘possibly’.)

II.3. SMPL-semantics: models

Let’s start with a simplified version of MPL: SMPL. (We’ll come to the full MPL shortly.)

Definition II.3.1. A simplified MPL-model (SMPL-model) is a pair: xW ,I y where:

• W is a non-empty set (“the set of possible worlds”)

• I is a function that assigns each (“interpretation function”)
sentence-letter–world pair a truth value, 1 or 0

Example (A toy model). W “ t0, 1, 2u

I pP, 0q “ 1 I pQ, 0q “ 0

I pP, 1q “ 1 I pQ, 1q “ 1

I pP, 2q “ 0 I pQ, 2q “ 0
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II.4. SMPL-semantics: valuations

Definition II.4.1. Given an SMPL-model M “ xW ,I y, the valuation for M , VM , is the
two place function that assigns 0 or 1 to each MPL-wff, for each w P W , as follows:

• VM pα,wq “ I pα,wq, for each sentence letter α

• VM pφÑ ψ,wq “ 1 iff VM pφ,wq “ 0 or VM pψ,wq “ 1

• VM p„φ,wq “ 1 iff VM pφ,wq “ 0

• VM p2φ,wq “ 1 iff VM pφ, vq “ 1 for all v P W

Remark. This generates the expected truth-conditions for diamond:

• VM p3φ,wq “ 1 iff VM pφ, vq “ 1 for some v P W

Worked Example E. Let M be the toy model in the above example. Compute:

VI p2P , 0q VI p2P , 2q

VI p3„P , 0q VI p3QØ 2P , 0q

VI p3P , 2q VI p33„P , 0q

II.5. Extension and intension

Let M “ xW ,I y be an SMPL model and φ be a MPL-wff.

Definition II.5.1. Call the truth-value VM pφ,wq the extension of φ in w (relative to M ).

Fact II.5.2. The PL-connectives are extensional: i.e. the extension of a complex PL-wff is
a function of the extensions of its immediate constituents, e.g.:

• VM p„φ,wq “ f„pVM pφ,wqq p“ 1´ VM pφ,wqq

• VM pφ^ ψ,wq “ f^pVM pφ,wq,VM pψ,wqq p“ VM pφ,wq ¨ VM pψ,wqq

But 2 is not extensional: i.e. there is no function f such that, for any M :

• VM p2φ,wq “ fpVM pφ,wqq

However 2 is ‘intensional’ in a natural sense.

Definition II.5.3. The intension of φ (relative to M )—written rφsM —may be defined:

rφsM “ tw : VM pφ,wq “ 1u

Fact II.5.4. The intension of a complex MPL-wff is a function of the intensions of its
immediate constituents, e.g.:

r„φsM “ W ´ rφsM rφ^ ψsM “ rφsM X rψsM r2φsM “

#

W if rφsM “ W

H otherwise
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II.6. SMPL-semantics: validity

Definition II.6.1 (Validity). Given an MPL-wff φ:

• φ is valid in an SMPL-model M “ xW ,I y iff VM pφ,wq “ 1 for every w P W

• φ is SMPL-valid if φ is valid in every SMPL-model.

Remark. In other words, φ is SMPL-valid if true at every world of every SMPL-model.

When this is so, we write (SMPL φ.

II.7. Establishing validity

To establish SMPL-validity we can employ informal semantic arguments akin to those used
to establish PL-validity above.

To show (SMPL φ it suffices to show that the supposition that VM pφ,wq “ 0 leads to a
contradiction (for M “ xW ,I y and w P W ).

Worked Example F. Show (SMPL 2pP Ñ Qq Ñ p2P Ñ 2Qq

Exercise 2. Give informal arguments to demonstrate the following:

(a) (SMPL 2pP ^Qq Ñ 2P ^2Q

(b) (SMPL 2P Ñ 22P

(c) (SMPL 3P Ñ 23P

II.8. Establishing invalidity

To establish the SMPL-invalidity of φ we need to specify a countermodel—i.e. an SMPL-
model xW ,I y such that VM pφ,wq “ 0 for some w P W .

Worked Example G. Show *SMPL „P Ñ „3P

Exercise 3. Specify countermodels that establish the following:

*SMPL 23P *SMPL 3pP ^2Qq Ñ 2pP ^Qq
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III. Modal Propositional Logic (MPL)

III.1. Motivating MPL: notable SMPL validities

The SMPL-semantics validates the following modal schemas:1

(D) (SMPL 2φÑ 3φ

(T) (SMPL 2φÑ φ

(B) (SMPL 32φÑ φ

(4) (SMPL 2φÑ 22φ

(5) (SMPL 32φÑ 2φ

But are these formulas intuitively valid? It depends on how we understand 2.

Worked Example H. Are (D), (T), (B), (4), and (5) are intuitively valid when 2 and
3 are read as below?

(a) 2φ: ‘It will be the case that φ at every future time’

3φ: ‘It will be the case that φ at some future time’

(b) 2φ: ‘You are required to make it the case that φ’

3φ: ‘You are permitted to make it the case that φ’

Notation. These, and some other, readings of 2 and 3 have canonical notations:

Gφ: ‘It will [is going to] be the case that φ at all future times’

Fφ: ‘It will be the case that φ at some future times’

Hφ: ‘It has been the case that φ at all past times’

Pφ: ‘It was the case that φ at some past times’

III.2. Motivating MPL: accessibility

What’s gone wrong e.g. in the temporal case?

• The obvious culprit is the SMPL-truth-conditions for 2. For 2 “ G, we get:

SMPL: Gφ is true at t iff φ is true at every time t1

• But intuitively, the correct truth-condition is this:

MPL: Gφ is true at t iff φ is true at every time t1 later than t.

1A schema is said to be valid if each instance of it is valid. Compare LfP, 2.4.1
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III.3. MPL-semantics: models (LfP 6.3)

MPL-models add an ‘accessibility relation’ to SMPL-models:

Definition III.3.1 (LfP 139). An MPL-model is a triple: xW ,R,I y where:

• W is a non-empty set (“the set of possible worlds”)

• R is a binary relation over W (“accessibility relation”)

• I is a two-place function that assigns each
sentence-letter–world pair a truth-value, 1 or 0 (“interpretation function”)

Remarks.

• W and I are the same as in the definition of SMPL-model.

• Rwv is read ‘v is accessible from w’ or ‘v is possible relative to w’
(informally: ‘w sees v’, etc.)

III.4. MPL-semantics: valuations

Definition III.4.1 (LfP 139–40). Given an MPL-model M “ xW ,R,I y, the valuation for
M , VM , is the function that assigns 0 or 1 to each MPL-wff for each w P W as follows:

• VM pα,wq “ I pα,wq, for each sentence letter α

• VM pφÑ ψ,wq “ 1 iff VM pφ,wq “ 0 or VM pψ,wq “ 1

• VM p„φ,wq “ 1 iff VM pφ,wq “ 0

• VM p2φ,wq “ 1 iff VM pφ, vq “ 1 for all v P W such that Rwv

Remark. The only change to the SMPL-semantic clauses is the switch from “truth at all
worlds” to “truth at all accessible worlds” in the final clause.

We continue to read ‘VM pφ,wq’ as ‘φ is true in w (in M )’.

Remark. This generates the following truth-conditions for diamond:

• VM p3φ,wq “ 1 iff VM pφ, vq “ 1 for some v P W such that Rwv

Example (A toy model). W “ t0, 1, 2u; R “ tx0, 0y, x0, 1y, x1, 2yu.

I pP, 0q “ 1 I pQ, 0q “ 0

I pP, 1q “ 1 I pQ, 1q “ 1

I pP, 2q “ 0 I pQ, 2q “ 0

10



Worked Example I. Let M be the toy model in the above example. Compute:

VI p2P , 0q VI p2P , 2q

VI p3„P , 0q VI p3QØ 2P , 0q

VI p3P , 2q VI p33„P , 0q

III.5. MPL semantics: validity and modal systems

Modal systems

Different modal systems result from imposing different conditions on accessibility:

System Condition(s) on R i.e.

K —

D R is serial on W for each w P W , there is some u s.t. Rwu

T R is reflexive on W for each w P W , Rww

B R is reflexive on W
R is symmetric for each w, v, Rwv implies Rvw

S4 R is reflexive on W
R is transitive for each w, v, u, Rwv and Rvu jointly imply Rwu

S5 R is reflexive on W
R is symmetric
R is transitive

Definition III.5.1 (Valid in a model, LfP 141). Let M “ xW ,R,I y be an MPL-model,
φ an MPL-wff:

• φ is valid in M iff VM pφ,wq “ 1 for every w P W .

Definition III.5.2 (S-valid, LfP 141). Let S be one of K, D, T, B, S4 or S5. Let φ be an
MPL-wff:

• φ is valid in S iff φ is valid in every S-model.

Remark. In other words, φ is S-valid if true at every world of every S-model.

When this is so, we write (S φ.

11



III.6. Establishing validity (LfP 6.3.2)

To establish MPL-validity we can employ informal semantic arguments akin to those used
to establish SMPL-validity above.

To show (S φ it suffices to show that the supposition that VM pφ,wq “ 0 leads to a contra-
diction given the condition on R imposed by S (for M “ xW ,R,I y and w P W ).

Worked Example J. Give informal semantic arguments to demonstrate the following:

(D) (D 2φÑ 3φ

(B) (B φÑ 23φ

Exercise 4. Give informal semantic arguments to demonstrate the following:

(T) (T 2φÑ φ

(4) (S4 2φÑ 22φ

(5) (S5 3φÑ 23φ

III.7. Establishing invalidity (LfP 6.3.3)

To establish the S-invalidity of φ we need to specify a countermodel—i.e. an S-model
xW ,R,I y such that VM pφ,wq “ 0 for some w P W .

Worked Example K. Specify countermodels to demonstrate the following:

(D) *K 2φÑ 3φ

(B) *4 φÑ 23φ

Exercise 5. Specify countermodels to demonstrate the following:

(T) *K 2φÑ φ

(4) *B 2φÑ 22φ

(5) *4 3φÑ 23φ

*B 3φÑ 23φ
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