Modal Logic

James Studd
A graduate class, TT17

Resources

Textbook (weeks 1-4): Logic for Philosophy, Ted Sider (OUP)
Webpage: jamesstudd.net/modallogic

I. Brief review of propositional logic (PL)

I.1. Official Syntax (LfP 2.1)

The language of PL has the following primitive vocabulary:
e Connectives: ~, —
e Infinitely many sentence letters: P, @, R, ... (with or without numerical subscripts)
e Parentheses: (, )

Well-formed formulas (wifs, alias: formulas, sentences) are defined as follows:
Definition I.1.1 (PL-wff, L{P 26).

e If a is a sentence letter, a is a PL-wff
e If ¢ and ¢ are PL-wffs, then ~¢ and (¢ — 1) are also PL-wffs

e Only strings that can be shown to be PL-wffs using the above clauses are PL-wffs

Worked Example A.
According to the letter of the definition, which of the following strings are PL-wffs?

Q ~(6 > ¥) ~~~ P
P—-Q ~(~R — Qu) (P A ~Q)
(P5 - Ql?) “’(”P) ”((”P - Q) - R)




I.2. Unofficial Syntax

Unless we're specifically concerned with syntactic matters, we’ll usually permit ourselves to
be looser about syntax.

Unofficial connectives (LfP 27)

To make writing down formulas easier we help ourselves to the following abbreviations in
the metalanguage:

o (¢ A1) is short for ~(¢ — ~)
e (¢ v 1) is short for (~¢ — 1)
e (¢ < 1) is short for (¢ — ) A (¥ — @)

Note. Here, following Sider, we differ from the Logic Manual, which takes all five connectives
as primitive.

Remark. Working with a short list of official connectives tends to make theory harder but

metatheory easier.

Bracketing conventions

We’ll apply standard bracketing conventions, mostly omitting outer brackets. (See e.g. the
Logic Manual.)

Worked Example B.

Write down the following in primitive notation:

~(Pv Q) PA~Q (P <Q)




I.3. Semantics: interpretations and valuations (LfP 2.3)

Definition I1.3.1 (LfP 29). A PL-interpretation is a function .# that assigns each sentence
letter a truth value, either 1 (‘true’) or 0 (‘false’).

Definition 1.3.2 (LfP 30). For any PL-interpretation .#, the PL-valuation for .#—symbolised
V,—is the (unique) function that assigns 1 or 0 to each wff as follows:

e V,(a) = #(«), for each sentence letter o
[ ] Vy(gb - ?/)) = 1iff Vj((b) =0 or V](w) =1
o Vy(~¢) = 1iff V() =0

Remark. I'll often read “Vy(¢) = 17 as “¢ is true in #”. Given their definitions, this
secures the expected truth-conditions for our unofficial connectives:

L] Vj(¢ \% w) =1 iff Vj(qb) =1or Vf(w) =1
o Vy(pn)=1iff Vy(¢) =1 and Vs () =1
o Vy(¢ o) =1iff Vy(¢) = Vs ()

I.4. Semantics: validity and consequence

Definition I1.4.1 (L{P 34).
e A sentence ¢ is PL-valid iff for every interpretation .#, V,(¢) = 1.

e A sentence ¢ is a semantic consequence of a set of sentences I' iff Vz(¢) = 1 for every
interpretation .# such that V,(y) = 1 for each y e T

Warning. Even in logic, terminology varies from source to source:

e When ¢ is valid, ¢ is also sometimes called a tautology or a logical truth (and, in
symbols, we write =pr, ¢).

Note that, unlike some authors, Sider reserves ‘valid’ for formulas (not arguments).

e Semantic consequence is also frequently called ‘entailment’ (symbolised I' Epr, ¢).
Although some authors use entailment for mere necessary implication.

Remark. Semantic consequence can be re-characterised in terms of ‘satisfaction’. Say that
& satisfies:

e a sentence ¢ if Vy(¢) =1
e aset I'if Vy(v) =1 for each y e T
Then I' = ¢ iff every interpretation that satisfies I' also satisfies ¢.



I.5. Establishing validity (LfP 2.4)
Truth-tables

Recall that we can establish validity and non-validity using truth-tables.

Worked Example C. Use truth tables to demonstrate the following:

HE@—=W—9) (i)~¢—t¢E~¢

Informal semantic arguments

Truth-tables are fine for PL. But they won't work when we come to modal logic. So let’s
introduce another means for establishing validity.

e To show &= ¢, give a semantic argument to show that the supposition that Vs (¢) = 0
leads to a contradiction (using the truth clauses in the definition of a valuation)

e To show ¢q,..., ¢, = 1, give a semantic argument to show that the suppositions that
Vi(p1) =+ =Vy(¢,) =1 and Vs (¢p) = 0 jointly lead to a contradiction

Worked Example D. Give informal semantic arguments to demonstrate the following:

) E(@—W—09) ()~ ¢—>9dE~¢

See also L{P, Examples 2.2 and 2.3, for further worked examples.

Exercise 1. Give an informal semantic argument to show that:
F(@p—W—x)—{(¢—=v) = (0 —X))

(Don’t use truth tables.)

(Proof theory: deferred until week 2!)



II. Towards modal propositional logic (MPL)

I1.1. Expressive strength and weakness in PL (cf. LfP 3.1)

Definition I1.1.1. An n-ary truth function is a function that maps each n-tuple of truth
values to a truth value (and is otherwise undefined).

Remark. An n-ary truth function is uniquely represented by the corresponding truth table

Example. For example the truth tables below characterise binary truth functions f,
and f_

ti by || At te) | fo(ti,ta)
1 1 1 1
1 0 0 1
0 1 0 0
0 O 0 1

Definition II1.1.2 (LfP 68). Let f be an n-ary truth function. Let ¢(Pi,..., P,) be a PL-
wif which contains P, ..., P, as its only sentence letters. Then ¢(P, ..., P,) symbolizes (or
expresses) f iff, for each PL-interpretation .#:

Vi(@(Pr..., P)) = f(I(P),..., I (F))

Remark. In other words, ¢(P, ..., P,) symbolises a truth function f if they have the same
truth table. e.g. P, A P, and P, — P, symbolise f, and f._.

Fact I1.1.3. Every n-ary truth function is symbolised by a PL-sentence ¢(P, ..., P,).
Fact II.1.4. Every PL-sentence ¢(FPy, ..., P,) symbolises an n-ary truth function.

Remark. Fact 1 demonstrates that PL has maximal expressive strength when it comes to
symbolising truth-functions. But Fact 2 shows it goes no further.

This shows that we cannot adequately capture non-truth-functional English connectives such
as ‘Tim knows that P’ or ‘It could be the case that P’.

To capture these, we need connectives whose semantic contribution cannot be summarised
in a truth table.



I1.2. Syntax (LfP 6.1)

The syntax is just like PL except that we add a new unary connective O (read: ‘box’ or ‘it
is necessary that’) which functions syntactically just like negation.

Official Syntax

The language of PL has the following primitive vocabulary:
e Connectives: ~, —, O
e Infinitely many sentence letters: P, @, R, ... (with or without numerical subscripts)

e Parentheses: (, )
Definition I1.2.1 (MPL-wff, LfP 135).

e If o is a sentence letter, o is a MPL-wif
e If ¢ and ¢ are MPL-wffs, then ~¢, (¢ — 1) and O¢ are also MPL-wffs
e Only strings that can be shown to be MPL-wffs using the above clauses are MPL-wffs

Unofficial connective

o O¢ is short ~O~¢. (< may be read ‘diamond’ or ‘possibly’.)

I1.3. SMPL-semantics: models

Let’s start with a simplified version of MPL: SMPL. (We'll come to the full MPL shortly.)

Definition I1.3.1. A simplified MPL-model (SMPL-model) is a pair: {(#', . ) where:
e # is a non-empty set (“the set of possible worlds”)

e .7 is a function that assigns each (“interpretation function”)
sentence-letter—world pair a truth value, 1 or 0

Example (A toy model). # = {0, 1,2}

j(P70): f(Q70 =0
F(P1) =1 7(Q,1
7(P,2) = 7(Q,2) =0




I1.4. SMPL-semantics: valuations

Definition I1.4.1. Given an SMPL-model .# = (#',.%), the valuation for 4,V 4, is the

two place function that assigns 0 or 1 to each MPL-wff, for each w € #, as follows:

V///(oz w) = J(a, w), for each sentence letter «

. ( )—1iffV///(¢7w)=O
o (D¢, )=1iff Vy(p,v) =1forallve #

Remark. This generates the expected truth-conditions for diamond:
o V,/(Cp,w) =1iff Vy(¢p,v) =1 for some ve W

Worked Example E. Let .# be the toy model in the above example. Compute:

V,(OP,0) Vs (OP,2)
Vs (O~P,0) Vs (OQ < OP,0)
Vs (OP,2) Vs (OO~P,0)

I1.5. Extension and intension

Let A4 = {W',.7) be an SMPL model and ¢ be a MPL-wiff.
Definition I1.5.1. Call the truth-value V (¢, w) the extension of ¢ in w (relative to .Z).

Fact I1.5.2. The PL-connectives are extensional: i.e. the extension of a complex PL-wff is
a function of the extensions of its immediate constituents, e.g.:

o Vu(~o,w) = fL(Vy(d,w) (=1-Vg(g,w))

o V(¢ Ah,w) = faNa(d,w), Viu(h,w) (= Va(,w) Vult,w))
But O is not extensional: i.e. there is no function f such that, for any .#:
However O is ‘intensional’ in a natural sense.

Definition I1.5.3. The intension of ¢ (relative to .#)—written [¢] ,—may be defined:

[¢)r = {w: Nu(d,w) =1}

Fact I1.5.4. The intension of a complex MPL-wff is a function of the intensions of its
immediate constituents, e.g.:

Wit [pls =W

[~¢lw =W =[0le  [ord]la=[0)wn[W]ls [O0las = { & otherwise



II.6. SMPL-semantics: validity

Definition I1.6.1 (Validity). Given an MPL-wff ¢:
e ¢ is valid in an SMPL-model .#Z = (¥, .%) ift V4 (¢, w) = 1 for every w e ¥
e ¢ is SMPL-valid if ¢ is valid in every SMPL-model.
Remark. In other words, ¢ is SMPL-valid if true at every world of every SMPL-model.

When this is so, we write Egypr, ¢.

11.7. Establishing validity

To establish SMPL-validity we can employ informal semantic arguments akin to those used
to establish PL-validity above.

To show Egypr, ¢ it suffices to show that the supposition that V,(¢,w) = 0 leads to a
contradiction (for 4 =W ,.7) and we ¥').

Worked Example F. Show E=gypr, O(P — Q) — (OP — 0Q)

Exercise 2. Give informal arguments to demonstrate the following:
(a) Eswpr O(P A Q) — OP A 0OQ

(b) EsmpL OP — OOP

(¢) EsmpL OP — OOP

I11.8. Establishing invalidity

To establish the SMPL-invalidity of ¢ we need to specify a countermodel—i.e. an SMPL-
model (¥, .#) such that V (¢, w) = 0 for some w e #'.

Worked Example G. Show Hgypr, ~P — ~OP

Exercise 3. Specify countermodels that establish the following:

Fsmpr, OCP Fsupr O(P A OQ) — O(P A Q)




ITI. Modal Propositional Logic (MPL)

I11.1. Motivating MPL: notable SMPL validities

The SMPL-semantics validates the following modal schemas:!
(D) EsvpL O¢ — O¢
(T) Esmpr O¢ — ¢

(B) Esmpr €00 — ¢
(4) EsupL O¢ — OO¢
(5) Esmpr ©O¢ — O¢

But are these formulas intuitively valid? It depends on how we understand O.

Worked Example H. Are (D), (T), (B), (4), and (5) are intuitively valid when O and
<& are read as below?

(a) DO¢: ‘It will be the case that ¢ at every future time’
O ‘It will be the case that ¢ at some future time’

(b) O¢: ‘You are required to make it the case that ¢’
O@: “You are permitted to make it the case that ¢’

Notation. These, and some other, readings of O and <& have canonical notations:
Go: ‘Tt will [is going to] be the case that ¢ at all future times’
F¢: ‘It will be the case that ¢ at some future times’
Ho: ‘It has been the case that ¢ at all past times’

P¢: ‘It was the case that ¢ at some past times’

I11.2. Motivating MPL: accessibility

What’s gone wrong e.g. in the temporal case?

e The obvious culprit is the SMPL-truth-conditions for 0. For O = G, we get:
SMPL: G¢ is true at t iff ¢ is true at every time #’

e But intuitively, the correct truth-condition is this:

MPL: G¢ is true at t iff ¢ is true at every time ¢’ later than ¢.

1A schema is said to be valid if each instance of it is valid. Compare L{P, 2.4.1



IT1.3. MPL-semantics: models (LfP 6.3)

MPL-models add an ‘accessibility relation’” to SMPL-models:

Definition I11.3.1 (LfP 139). An MPL-model is a triple: (#, %, .7 ) where:

e ¥ is a non-empty set (“the set of possible worlds”)
e 7 is a binary relation over # (“accessibility relation”)
e .7 is a two-place function that assigns each
sentence-letter-world pair a truth-value, 1 or 0 (“interpretation function”)
Remarks.

o W and £ are the same as in the definition of SMPL-model.

e Zwv is read ‘v is accessible from w’ or ‘v is possible relative to w’
(informally: ‘w sees v’, etc.)
II1.4. MPL-semantics: valuations

Definition I11.4.1 (LfP 139-40). Given an MPL-model .# = (¥, %, .7 ), the valuation for
M, V., is the function that assigns 0 or 1 to each MPL-wff for each w € # as follows:

o V,(a,w) =7 (a,w), for each sentence letter a

o Vy(p— 1, )—1iff\///(<z5,w)=00r Vi, w) =1

o Vy(~p,w)=1iff Vy(p,w) =

o V,(Op,w)=1iff Vy(¢,v) =1 for all v e # such that Zwv

Remark. The only change to the SMPL-semantic clauses is the switch from “truth at all
worlds” to “truth at all accessible worlds” in the final clause.

We continue to read ‘V,(¢,w)” as ‘¢ is true in w (in .4)’.

Remark. This generates the following truth-conditions for diamond:

o V,(Cop,w) =1iff Vy(¢,v) =1 for some v € # such that Zwv

Example (A toy model). # = {0,1,2}; Z = {{0,0),<0,1),{1,2)}.

7(P,0) = 7(Q,0) =0
J(P1) =1 I(Q,1) =1
I(P,2) =0 7(Q,2) =0
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Worked Example I. Let .# be the toy model in the above example. Compute:

VJ(DP,O) Vﬂ(DP, 2)
Vy (O~P,0) Vs (¢Q < OP,0)
Vs (OP,2) V (OO~ P, 0)

II1.5. MPL semantics: validity and modal systems
Modal systems

Different modal systems result from imposing different conditions on accessibility:

System Condition(s) on #Z i.c.

K —

D & is serial on # for each w € #, there is some u s.t. Zwu
T % is reflexive on # for each w € W', Zww
B

Z is reflexive on W

Z is symmetric for each w, v, Zwv implies Zvw
S4  Z is reflexive on #
Z is transitive for each w, v, u, Zwv and Zvu jointly imply Zwu

S5 Z is reflexive on #
Z is symmetric
% is transitive

Definition ITI.5.1 (Valid in a model, LfP 141). Let .4 = (#',%,.9 ) be an MPL-model,
¢ an MPL-wft:

o ¢ is valid in A itV (¢, w) =1 for every we ¥ .

Definition II1.5.2 (S-valid, LfP 141). Let S be one of K, D, T, B, S4 or S5. Let ¢ be an
MPL-wit:

e ¢ is walid in S iff ¢ is valid in every S-model.

Remark. In other words, ¢ is S-valid if true at every world of every S-model.

When this is so, we write =g ¢.

11



I11.6. Establishing validity (LfP 6.3.2)

To establish MPL-validity we can employ informal semantic arguments akin to those used
to establish SMPL-validity above.

To show k=g ¢ it suffices to show that the supposition that V (¢, w) = 0 leads to a contra-
diction given the condition on & imposed by S (for # = (W', %, 7 ) and we ¥').

Worked Example J. Give informal semantic arguments to demonstrate the following:

(D) Ep O¢ — O
(B) Fp ¢ — 009

Exercise 4. Give informal semantic arguments to demonstrate the following:
(T) Er O¢ — ¢

(4) Fss O — OO¢

(5) g5 Cp — 00

IT1.7. Establishing invalidity (LfP 6.3.3)

To establish the S-invalidity of ¢ we need to specify a countermodel—i.e. an S-model
W, %, ) such that V4 (¢, w) = 0 for some w e #'.

Worked Example K. Specify countermodels to demonstrate the following:

(D) ¥k O¢ — <o
(B) #40 — 000

Exercise 5. Specify countermodels to demonstrate the following:
(T) ¥k O¢p — ¢
(4) #p 00 — OO0
(5) H#a Op— 009
#p O — 00
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