

Modal Logic

James Studd

A graduate class, TT17

III.8 Proof theory for K (Compare LfP 6.4)

We'll present an axiomatic proof system for K.

Definition III.8.1 (MPL-tautology, LfP 160). An MPL-formula ϕ is said to be an *MPL-tautology* if ϕ results from a PL-tautology by uniform substitution of MPL-wffs for sentence letters.

Remark. See LfP 102 for a list of some well-known PL-tautologies.

Worked Example A. Which of the following are propositional tautologies?

$$(P \wedge \sim P) \rightarrow \square P \quad \square P \rightarrow \diamond P \quad \sim \square P \leftrightarrow \diamond \sim P \quad \square \sim P \leftrightarrow \sim \diamond P$$

Warning. Sider's term may be misleading. Note that not all K-valid MPL-formulas are MPL-tautologies (although the converse holds).

Axioms and Rules for K.

- *Axioms:* All MPL-tautologies are K-axioms, plus all instances of the following:

$$(K) \quad \square(\phi \rightarrow \psi) \rightarrow (\square\phi \rightarrow \square\psi)$$

- *Rules:* All instances of the following are K-rules:

$$\text{MP} \quad \frac{\phi \quad \phi \rightarrow \psi}{\psi} \quad \text{Nec} \quad \frac{\phi}{\square\phi}$$

Definition of an S-theorem A wff ϕ is *provable in S*, or an *S-theorem*, (in symbols: $\vdash_S \phi$) if there is a finite sequence of wffs:

$$\begin{array}{c} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_n \end{array}$$

where the last line, ϕ_n , is ϕ and for each line, ϕ_i ($i = 1, \dots, n$), either:

- ϕ_i is an S-axiom, or
- ϕ_i follows from earlier wffs in the sequence via an S-rule:

$$\frac{\phi_{j_1} \dots \phi_{j_n}}{\phi_i}$$

with $j_1, \dots, j_n < i$.

Worked Example B. Construct proofs to show the following:

- (i) $\vdash_K \Box(P \rightarrow P)$
- (ii) $\vdash_K \Box(P \rightarrow Q) \rightarrow \Box(\sim Q \rightarrow \sim P)$

Remark. Even when we're doing proof theory, we almost never write out full axiomatic proofs. Instead we convince ourselves that such a proof exists, telescoping steps using derived rules of the form:

$$\frac{\phi_1, \dots, \phi_n}{\psi}$$

Such a rule is said to be *S-admissible* if the S-provability of ϕ_1, \dots, ϕ_n implies the S-provability of ψ .

A derived rule. Suppose $\phi_1, \dots, \phi_n \vdash_{PL} \psi$. Then the following rule is K-admissible:

$$\mathbf{PL} \frac{\phi_1, \dots, \phi_n}{\psi}$$

More generally, PL is K-admissible whenever $\phi_1 \rightarrow (\phi_2 \rightarrow (\dots \rightarrow (\phi_n \rightarrow \psi) \dots))$ is an MPL-tautology.

Another derived rule. Let O be \square or \diamond . Then the following is K-admissible:

$$\text{Becker} \frac{\phi \rightarrow \psi}{O\phi \rightarrow O\psi}$$

Worked Example C. Give abbreviated proofs to demonstrate the following:

- (i) $\vdash_K \square(P \rightarrow Q) \rightarrow (\diamond P \rightarrow \diamond Q)$
- (ii) $\vdash_K (\square P \wedge \diamond Q) \rightarrow \diamond(P \wedge Q)$

Extended Remark. Our axiomatic system differs from Sider's. We've trivialized the PL-part of the proof system by admitting all substitution instances of PL-valid formulas as axioms. Sider instead uses the following axioms for PL

- (PL1) $\phi \rightarrow (\psi \rightarrow \phi)$
- (PL2) $(\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi))$
- (PL3) $(\sim\psi \rightarrow \sim\phi) \rightarrow ((\sim\psi \rightarrow \phi) \rightarrow \psi)$

- This makes official proofs in Sider's system longer than in ours.
e.g. the official proof of worked example B (ii) above is (much) longer in Sider's system. We first have to establish $(P \rightarrow Q) \rightarrow (\sim Q \rightarrow \sim P)$ in his system (and this takes work).
- In practice, however, this makes little difference to abbreviated proofs.
Sider almost immediately helps himself to PL as a derived rule on the grounds that his PL-axioms are complete: they prove every PL-valid formula (given MP).
- Why is it okay to take all MPL-tautologies as axioms?

This trivialises the propositional part of the proof system. On the other hand MPL-tautologies meet the following desiderata for axioms:

- (i) The axioms are valid (in K).
- (ii) There's an algorithm that delivers a correct 'yes'/'no' answer to the question 'is this formula an axiom?' in a finite amount of time.

Further Exercise 1. Construct abbreviated proofs demonstrating the following:

$$\vdash_K \square(P \wedge Q) \rightarrow \square P \wedge \square Q \quad \vdash_K \square P \vee \square Q \rightarrow \square(P \vee Q) \quad \vdash_K \square P \wedge \square Q \rightarrow \square(P \wedge Q)$$

(See Sider pp. 161–162 for solutions.)

III.9 Proof theory for D, T, B, S4 and S5

We simply add further axioms to those for K. (The definition of S-theorem is as above.)

Axioms and Rules for D, T, B, S4 and S5. D, T, B, S4 and S5 all have all the K axioms and rules, together with the following.

D All instances of $\Box\phi \rightarrow \Diamond\phi$ are D-axioms.

T All instances of $\Box\phi \rightarrow \phi$ are T-axioms.

B All instances of $\Diamond\Box\phi \rightarrow \phi$ and T are B-axioms.

S4 All instances of $\Box\phi \rightarrow \Box\Box\phi$ and T are S4-axioms.

S5 All instances of $\Diamond\Box\phi \rightarrow \Box\phi$ and T are S5-axioms.

Exercise 6. Construct abbreviated proofs to demonstrate the following:

- (i) $\vdash_D \Box\phi \rightarrow \Diamond\phi$
- (ii) $\vdash_T \Box\phi \rightarrow \Diamond\phi$
- (iii) $\vdash_K \sim\Diamond\phi \leftrightarrow \Box\sim\phi$
- (iv) $\vdash_K \Diamond\sim\phi \leftrightarrow \sim\Box\phi$
- (v) $\vdash_D \sim\Box(\phi \wedge \sim\phi)$
- (vi) $\vdash_{S4} \Box\phi \rightarrow \Box\Diamond\Box\phi$
- (vii) $\vdash_{S4} \Diamond\Diamond\Diamond\phi \rightarrow \Diamond\phi$

III.10 Adequacy

Let S be K, D, T, B, S4 or S5. Then S-provability and S-validity coincide.

Soundness theorem If $\vdash_S \phi$, then $\models_S \phi$

Completeness theorem If $\models_S \phi$, then $\vdash_S \phi$

Remark. Soundness is straightforward; Completeness is a bit more involved.