

V. VDQML: some variations

V.1. Non-rigid terms

Remark. There's an important disanalogy between constants and predicates in VDQML:

$$\begin{aligned} (\text{NI}) &\models_{\text{VDQML}} a = b \rightarrow \Box a = b \\ (\text{NC}) &\not\models_{\text{VDQML}} \forall x(Fx \leftrightarrow Gx) \rightarrow \Box \forall x(Fx \leftrightarrow Gx) \end{aligned}$$

- The desirability of (NI) depends on (i) what constants are taken to formalize; (ii) our views on rigidity. Consider:
 - (1) Plato = the teacher of Aristotle but he might not have been
 - (2) Sue = Arkela but she might not have been
- The source of the difference isn't hard to pinpoint:
 - The extension of a , $\mathcal{I}(a)$, remains fixed from world-to-world
 - The extension of F , $\mathcal{I}_w(F)$, varies from world to world

Individual constants are ‘strongly rigid’ in Kripke's terminology

To allow for non-rigid terms, we may modify our model theory as follows:

Definition V.1.1 (Semantics for non-rigid terms). A NRT-VDQML model is quintuple, $\langle \mathcal{W}, \mathcal{R}, \mathcal{D}, \mathcal{Q}, \mathcal{I} \rangle$, just like a VDQML model, except \mathcal{I} assigns each constant α a referent in each world:

- $\mathcal{I}_w(\alpha) \in \mathcal{D}$

We then relativize the denotation of terms, and the satisfaction conditions of atomic formulas to worlds in the natural way:

$$[\alpha]_{\mathcal{M},g,w} = \begin{cases} \mathcal{I}_w(\alpha) & \text{if } \alpha \text{ is a constant} \\ g(\alpha) & \text{if } \alpha \text{ is a variable} \end{cases}$$

- $\mathbf{V}_{\mathcal{M},g}(\alpha = \beta, w) = 1$ iff $[\alpha]_{\mathcal{M},g,w} = [\beta]_{\mathcal{M},g,w}$
- $\mathbf{V}_{\mathcal{M},g}(\Pi \alpha_1, \dots, \alpha_n, w) = 1$ iff $\langle [\alpha_1]_{\mathcal{M},g,w}, \dots, [\alpha_n]_{\mathcal{M},g,w} \rangle \in \mathcal{I}_w(\Pi)$

The other semantic clauses and the definition of validity remain the same as before.

$$\begin{aligned} (\text{NI}) &\not\models_{\text{NRT-VDQML}} a = b \rightarrow \Box a = b \\ (\text{NC}) &\not\models_{\text{NRT-VDQML}} \forall x(Fx \leftrightarrow Gx) \rightarrow \Box \forall x(Fx \leftrightarrow Gx) \end{aligned}$$

V.2. Possibilist quantifiers (compare LfP 9.6.4)

Recall that the Barcan formula is not VDQML-valid:

$$\begin{aligned} (\text{BF}) \ \#_{\text{VDQML}} \diamond \exists \alpha \phi \rightarrow \exists \alpha \diamond \phi \\ (\text{CBF}) \ \#_{\text{VDQML}} \exists \alpha \diamond \phi \rightarrow \diamond \exists \alpha \phi \end{aligned}$$

This non-validity flows in part from a so-called ‘actualist’ treatment of quantifiers in VDQML. We could instead introduce a ‘possibilist’ quantifier \forall_p :

$$\begin{array}{ll} \text{‘Actualist’} & \text{‘Possibilist’} \\ \forall \text{ ranges over } \mathcal{D}_w \text{ in } w & \forall_p \text{ ranges over } \mathcal{D} \text{ in } w \end{array}$$

The only difference compared with VDQML is the semantic clause for \forall_p :

- $V_{\mathcal{M},g}(\forall \alpha \phi, w) = 1$ iff, for every $d \in \mathcal{D}_w$, $V_{\mathcal{M},g_d^\alpha}(\phi, w) = 1$
- $V_{\mathcal{M},g}(\forall_p \alpha \phi, w) = 1$ iff, for every $d \in \mathcal{D}$, $V_{\mathcal{M},g_d^\alpha}(\phi, w) = 1$

Possibilist quantifiers restore the VDQML-validity of (BF) and (CBF):

$$\begin{aligned} (\text{BF}) \ \models_{\text{VDQML}} \diamond \exists \alpha \phi \rightarrow \exists \alpha \diamond \phi \\ (\text{CBF}) \ \models_{\text{VDQML}} \exists \alpha \diamond \phi \rightarrow \diamond \exists \alpha \phi \end{aligned}$$

V.3. Strict actualist predicates

Another contentious non-validity in VDQML is sometimes called the ‘being constraint’:

$$(\text{BC}) \ \#_{\text{VDQML}} Fx \rightarrow \exists y y = x$$

One way to render (BC) valid is to switch to a ‘strict actualist’ semantics for predication. SA-VDQML-semantics makes the following modification to the definition of VDQML model $\langle \mathcal{W}, \mathcal{R}, \mathcal{D}, \mathcal{Q}, \mathcal{I} \rangle$:

- $\mathcal{I}(\Pi^n)$ is a set of $n + 1$ -tuples of the form $\langle u_1, \dots, u_n, w \rangle$, where u_1, \dots, u_n are members of \mathcal{D}_w and $w \in \mathcal{W}$, for each n -place predicate Π^n

$$(\text{BC}) \ \models_{\text{SA-VDQML}} Fx \rightarrow \exists y y = x$$