
Grundlagen der Arithmetik

James Studd

Frege lectures, TT19

0. Frege and the philosophy of mathematics

Gottlob Frege (henceforth F.), 1848–1925, worked in mathematics, logic, and philosophy.

• This course focuses on Die Grundlagen der Arithmetik (henceforth GL.)1

• The first lecture outlines some of F.’s views about

A. the ontology of mathematics

B. metaphysics more generally

C. mathematical epistemology

D. logicism (roughly: the thesis that mathematics is reducible to logic).

• These notes are available online: jamesstudd.net/GL

A. Ontology

The ontological question: what is there?

• Prima facie, there are all sorts of things.

– Common sense: there are chairs, pens, humans, their parts, etc.

– Physics: there are electrons, quarks, leptons, etc.

– Mathematics: there are numbers, functions, sets, vector spaces, etc.

• Much effort is expended debating whether there ‘really’ are these items.

1Translated into English by J. L. Austin (Blackwell, 1950).
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Mathematical test case: are there numbers?

Here are two arguments that there are:

Numbers #1.

(P) 4 is a number that is even.

(C) There is at least one number.

• (P) is a (trivial) theorem of the standard mathematical theory of the natural
numbers, Peano Arithmetic (PA).

• (C) is a straightforward logical consequence of (P).

Numbers #2.

(P1) The sentence (P) is true.

(P2) The sentence (P) is true iff the numeral ‘4’ refers to an item that satisfies
the predicate ‘is a number that is even’.

(P3) An item satisfies the predicate ‘is a number that is even’ iff it is a number
and is even.

(C) There is at least one number.

• (P2) and (P3) derive support from standard semantics.

Reaction 1: fictionalism

Fictionalism: mathematics is a useful fiction.

• On this view, Numbers #1 bears comparison with the following argument:

Wizards #1.

(P1) Harry Potter is a wizard who attends Hogwarts.

(C1) There are wizards.

• A fictionalist may seek to assimilate (P) to (P1)

– (P1) isn’t (really) true; it’s just true according to J. K. Rowling’s story.

– (P) isn’t (really) true; it’s just true according to PA.

– Consequently, (P1)—which asserts that (P) is true—also fails.
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According to fictionalism, then, neither argument is sound:

• Numbers #1 is unsound2 because (P) is not true.

• Numbers #2 is unsound because (P1) is not true.

Challenge: if Peano arithmetic is a false theory, how come it’s so useful?3

Reaction 2: paraphrase nominalism

Paraphrase nominalism (PN): the theorems of PA are true; but their commitment to
numbers is merely apparent.

• Consider, another trivial theorem of PA and a ‘nominalist paraphrase’:

(1) 2` 2 “ 4

(1)1 if there are exactly two F s and exactly two Gs (and nothing is both F and
G), then there are exactly four items that are F -or-G

• Looking at its surface form, (1) appears to refer to numbers (namely, 2 and 4).

• But the nominalist paraphrase (1)1 does not refer to numbers:

– e.g. ‘there are exactly two F s’ only commits us to F s

– It can be formalized without quantifying over numbers.

– So understood, (1)1 does not entail that there are numbers.

• According to paraphrase nominalism, the surface form of (1) is misleading.

– The logical/semantic structure of (1) is more akin to (1)1, or some other
nominalist paraphrase.

– The nominalist paraphrase does not refer to or quantify over numbers.

According to PN, Numbers #1 is invalid (or harmless).

• Like (1), the logical/semantic structure of premiss (P) is given by a nominalist
paraphrase that does not logically entail that there are numbers.

• Thus, if (C) is taken at face value, the argument is invalid.

• On the other hand, if (C) is also short for a nominalist paraphrase (which doesn’t
entail that there are numbers), we can accept the conclusion without including
numbers in our ontology.

2An argument is sound iff it is valid and has true premisses.
3For an interesting fictionalist response to this challenge, see Hartry Field’s Science without Numbers.
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Objection: but surely the formalized version of Numbers #1 is clearly valid.

• The premiss and conclusion may be formalized as follows:

(P)˚ Np4q ^ Ep4q

(C)˚ DxNpxq

PN reply: yes, but this is not a correct formalization of Numbers #1.

• After all, (P)˚ does entail (C)˚!

Similarly, according to PN, Numbers #2 is unsound.

• (P1) holds.

• But (P2) fails:

– instead the numeral ‘4’ in (P) does not function as a designator

– the truth of (P) does not require the numeral ‘4’ to refer to something

Summary: PN may respond to the arguments as follows.

• Numbers #1 is invalid (although P is true).

• Numbers #2 is unsound since P2 is false.

Challenge: if (P) doesn’t have a semantic structure corresponding to (P)‹,
what is the semantic structure of mathematical statements?

Consider, for example, the Fundamental Theorem of Arithmetic: Every composite num-
bers is a product of primes (unique up to the order of the factors).

• How might we paraphrase this without quantifying over numbers?

• Does this approach generalize outside number theory: e.g. eiπ ` 1 “ 0?

Reaction 3: the Fregean view

F.’s view opposes both fictionalism and paraphrase nominalism:

• (P) is (really, literally) true.

• Consequently (P2) is also true.

• Moreover, as its surface form suggests, the logical/semantic structure of (P) is
faithfully captured by (P)‹, and (P2) and (P3) accurately describe its semantics.

• Numbers #1 and Numbers #2 are both sound arguments.
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B. Metaphysics

Platonism about F s may be defined as the conjunction of three theses:4

Existence. There are F s.

Abstractness. F s are abstract.

Independence. F s are independent of intelligent agents and their language,
thought, and practices.

F. defends a version of platonism about numbers :

• As noted, F. accepts that numbers exist.

• Moreover, numbers are not located in space (§§61, 93).

• Numbers are ‘objective’: i.e. ‘independent of our sensation, intuition, and imagi-
nation’ (§26).

C. Epistemology

Assume platonism. This leads to some notorious epistemological issues.

• Abstract entities—outside spacetime—are presumably causally inert.

• Unlike e.g. chairs and pens, we surely don’t perceive numbers.

– N.B.: it’s one thing to perceive, e.g., that there are four chairs

– Quite another to perceive the number four

– F. rejects paraphrase nominalism

How then are we able to know arithmetical facts?

First try: by logical deduction from arithmetical axioms.

• Plausibly, much mathematical knowledge is gained via proof.

• We start with basic mathematical assumptions (axioms).

• We then employ logic and definitions to derive further propositions (theorems).

4This formulation is given (for F = mathematical object) by Øystein Linnebo, in his entry “Platon-
ism in the Philosophy of Mathematics”, The Stanford Encyclopedia of Philosophy (Spring 2018
Edition), Edward N. Zalta (ed.), https://plato.stanford.edu/archives/spr2018/entries/

platonism-mathematics/.
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Objection: but how do we gain knowledge of the axioms?

Two answers are considered in GL:

Empiricism: mathematical knowledge ultimately rests on empirical evidence.

Logicism: mathematical axioms may be deduced from ‘general logical laws’ and defi-
nitions (§§3, 87).

• F. rejects empiricism and defends logicism.

D. F.’s logicist programme—short version

F. develops the view over three major works:

Begriffsschrift a formalized language of pure thought modelled upon the language of
arithmetic (1879)

• F. develops an axiomatic system of higher-order logic.

Grundlagen der Arithmetik trans. Foundations of Arithmetic: a logico-mathemat-
ical enquiry into the concept of number (1884).

• F. outlines a logicist reduction of arithmetic centering on the following axiom:

(HP) The number of F s = the number of Gs iff the F s and the Gs are in
one-one correspondence.

• Given suitable definitions, the axioms of PA may be derived from HP.

• F. claims further that HP may in turn be derived from a suitable definition
of ‘cardinal number’ in terms of objects he calls extensions.

• But he doesn’t give a formal theory of extensions—adding in a notorious
footnote: ‘I assume that it is known what the extension of a concept is’ (§69).

Grundgesetze der Arithmetik trans. Basic Laws of Arithmetic (1893, 1903)

• F.’s magnum opus, in two published volumes, sets out to painstakingly carry
through the GL logicist reduction.

• Here, F. sets out a theory of extensions—which he claims to be a logical
theory—deploying the following axiom:

(BLV) The extension of F = the extension of G iff F and G are coextensive.

• Alas, (BLV) is inconsistent in Frege’s logic, leading to Russell’s paradox.

• And Bertrand Russell tells him so in a letter in 1902.

He goes on to do some seminal work in the philosophy of language (most famously,
perhaps, ‘On Sense and Reference’).
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E. A logico-mathematical enquiry into the concept of
number—what, and why?

• GL examines the concept of Number (esp. natural number and cardinal number):

– natural numbers are non-negative integers: 0, 1, 2,. . .

– cardinal numbers, according to F., answer the question How Many? (§44)

• Ultimately, F. wants to find gap-free proofs of arithmetical propositions

the fundamental propositions of arithmetic should be proved, if in any
way possible, with the utmost rigour; for only if every gap in the chain of
deductions is eliminated with the greatest care can we say with certainty
upon what primitive truths the proof depends. (§4)

• In particular, his logicist programme calls for him to prove both

– particular numerical formulae, e.g. 2` 2 “ 4

– general arithmetical laws, e.g. pn`mq ` k “ n` pm` kq, esp. axioms.

• This project leads F. ask whether the concepts such as cardinal number and natural
number can be analysed in terms of more basic concepts:

If we now try to [give gap-free proofs] we very soon come to propositions
which cannot be proved so long as we do not succeed in analysing con-
cepts which occur in them into simpler concepts or in reducing them to
something of greater generality. Now here it is above all Number which
has to be either defined or recognised as indefinable. This is the point
which the present work is meant to settle. (§4)

I. Views of certain writers on the nature of

arithmetical propositions

In Part I of GL, F. sets the stage for his argument that arithmetical propositions are
derivable using only logic and definitions. Among other things:

• He objects to the view that numerical formulae are self-evident (§5)

• He floats the idea that numerical formulae are provable from definitions and arith-
metical laws (§6)

• He trenchantly criticizes Mill’s empiricist view of numerical formulae (§7–8)

• He rejects the thesis that arithmetical laws are inductive truths (§9–10)

• He rejects Kant’s idea that arithmetical laws are based on intuition (§12–14)
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§5: numerical formulae are not self-evident

• Are numerical formulae, e.g. 2` 3 “ 5, unprovable and self-evident?

• F. answers:

– It is plainly not self-evident that 135 664` 37 863 “ 173 527

– Taking all numerical formulae as unprovable axioms ‘conflicts with one of the
requirements of reason, which must be able to embrace all first principles in
a survey’

§6: proving numerical formulae

• F.’s counterproposal—numerical formulae are provable from three things:

– definitions

– arithmetical laws

– logical axioms and rules

• He illustrates this by proving 2 + 2 = 4.

Definitions: 4 “df 3` 1, 3 “df 2` 1, 2 “df 1` 1.

Arithmetical law: m` pn` pq “ pm` nq ` p

Logical rule:
s “ t φrs{vs

φrt{vs

§7–8: against Mill’s empiricism

• Mill thinks arithmetical knowledge is empirical (a posteriori):

– Numerical formulae are derived from axioms and definitions, but

– Axioms ultimately rest on ‘superabundant and obvious’ empirical evidence

– In fact, Mill even thinks the definitions presuppose empirical propositions:

. . . we may call, “Three is two and one,” a definition of three; but the
calculations which depend on that proposition do not follow from the
definition itself, but from an arithmetical theorem presupposed in it,
namely, that collections of objects exist, which while they impress
the senses thus,

˝ ˝
˝

may be separated into two parts, thus, ˝˝ ˝ . (System of Logic,
book II, ch. VI, §2)
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F’s criticisms come thick and fast in §7:

Nailed down. ‘What a mercy, then, that not everything in the world is nailed down;
for if it were, we should not be able to bring off this separation, and 2 + 1 would
not be 3!’

Small numbers. ‘What a pity that Mill did not also illustrate the physical facts un-
derlying the numbers 0 and 1!’

Big numbers. ‘If the definition of each individual number did really assert a special
physical fact, then we should never be able to sufficiently admire, for his knowledge
of nature, a man who calculates with nine-figure numbers.’

Wider applicability. From Mill’s account of ‘a three’, ‘we can see that it is really
incorrect to speak of three strokes when the clock strikes three, or to call sweet, sour
and bitter three sensations of taste; and equally unwarrantable is the expression
“three methods of solving an equation.”’

Kitcher offers some replies on Mill’s behalf.5

§9–10: Against arithmetical laws being inductive truths

• Might arithmetical laws rest on inductive inferences? e.g:

1` 2 “ 2` 1, 2` 5 “ 5` 2, 178` 4 “ 4` 178, ¨ ¨ ¨

n`m “ m` n

• F objects to the view that arithmetical laws are inductive truths (§10):

Inductive base. ‘From what particular facts are we to start here, in order to
advance to the general? The only available candidates . . . are the numerical
formulae. Assign them to it and . . . we should have to cast around for some
other means of establishing the numerical formulae.’

Circularity. ‘The procedure of induction . . . can itself be justified only by means
of general propositions of arithmetic. . . . Induction . . . must base itself on
the theory of probability, since it can never render a proposition more than
probable. But how probability theory could possibly be developed without
presupposing arithmetical laws is beyond comprehension.’

5Arithmetic for the Millian, Philosophical Studies 37 (1980), pp. 215-236.
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Part II: Views of certain writers on the concept of

Number

In Part II of GL, F. sets the stage for his definitions of cardinal number and natural
number by criticizing other views:

• He rejects the view that number is a property of external things akin to colour or
weight (§21–25)

• He rails against the idea that number might be subjective (§26–27)

§21–25: number is not a property of external things

• F’s starting point is natural language:

In language, numbers most commonly appear in adjectival form and
attributive constructions in the same ways as words like hard, heavy or
red. (§21)

(2) a. The tree has red leaves

b. The tree has 1000 leaves

(3) a. The leaves are red

b. The stone is heavy

c. The cards are fifty-two

• F.: the expressions ‘hard’, ‘heavy’ and ‘red’ stand for properties of external things.

• Is the same true of number terms?

It is natural to ask whether we must think of the individual numbers
too as such properties, and whether, accordingly, the concept of Number
can be classed along with that, say, of colour. (§21)

• To elaborate a bit, the follow thesis seems perfectly plausible:

Weight is a property of external things e.g. consider again (3b)

– ‘The stone’ stands for an external object

– ‘heavy’ stands for a property of objects (heaviness)

– (3b) says that the object has the property

10



• We might analogously propose:

Millian thesis: number is a property of external things e.g. take (3c):

– ‘The cards’ stands for an external object

– ‘fifty-two’ stands for a property of objects (fifty-twoness)

– (3c) says that the object has the property

• F. quotes Mill as defending this view (§23).

• Mill: the name of a number connotes:

of course, some property belonging to the agglomeration of things which
we call by the name; and that property is the characteristic manner
in which the agglomeration is made up of, and may be separated into,
parts. (System of Logic, bk. III, xxiv, §5)

• F. objects to the Millian thesis in §23–5.

Objection A: from units

• Mill’s use of ‘the characteristic manner’ suggests that there is a unique character-
istic manner in which agglomerations are split up (§23).

• F objects to this claim (§22-23):

If I hand someone a stone with the words: Find how heavy it is, this
tells him exactly what he has to discover. But if I place a pile of playing
cards in his hands with the words: Find how many there are, this does
not tell him whether I wish to know the number of cards, or of complete
packs of cards, or even say of honour cards at skat.. . . I must add some
further word—cards, or packs, or honours. (§22)

• To press F’s point, the following are presumably all the very same agglomeration:

– the agglomeration of the fifty-two cards in the pack

– the agglomeration of the four suits in the pack

– the agglomeration of the one pack

• Consequently, Millian number-properties either apply to all or none of them.

• We cannot account for the difference in truth-value between the following:

(4) a. The cards in the pack are fifty-two

b. The suits in the pack are fifty-two
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Objection B: from universal applicability (again)

• Mill: agglomerations are agglomerations of one or more external objects.

• F.: number ‘is applicable over a far wider range’. (§24)

Do such things really exist as agglomerations of proofs of a theorem, or
agglomerations of events? And yet these too can be counted. (§23)

• Adapting F’s thought, how is Mill’s view to apply in the following cases?

(5) a. The natural numbers less than 2 are two

b. There are 0 moons of Venus

• Presumably, on a Millian view:

– (5a) predicates twoness of the agglomeration of natural numbers less than 2.

– (5b) predicates zeroness of the agglomeration of moons of Venus

• Objection: there are no such agglomerations.

– By Mill’s lights, natural numbers aren’t even objects, let alone objects we can
agglomerate.

– Venus has no moons: there’s no agglomeration to apply zeroness to.

§26–7: Is number something subjective?

• To save Mill’s thesis, might we add a subjective element?

• Perhaps the agglomeration receives a number property only relative to how a
thinker views this object :

– viewed qua cards, the agglomeration has the property fifty-two

– viewed qua suits, the agglomeration has the property four, etc.

F. roundly rejects a subjective account of number

. . . number is no whit more an object of psychology. . . than, let us say, the
North Sea is. . . . If we say “The North Sea is 10,000 square miles in extent”
then neither by “North Sea” nor by “10,000” do we refer to any state of or
process in our minds: on the contrary, we assert something quite objective,
which is independent of our ideas and everything of that sort. (§26)
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Objective v. subjective

F. distinguishes subjective sensations and ideas from objective items and qualities :

• Subjective—e.g.:

– the white sensation you get from looking at snow (§27)

– your idea of the North Sea (i.e. the mental picture you associate with this
body of water, cf. n. 1 in §27)

• Objective—e.g.:

– the quality of being white (i.e reflecting certain wavelengths of light, §22, 27)

– the North Sea

– 10,000 (F. claims)

• Subjective sensations and ideas depend on the subject:

– One person’s idea is, by virtue of its being theirs, different to another’s

– A person’s idea or sensation can’t exist unless the person does

• In contrast, what is objective is ‘what is independent of our sensation, intuition,
and imagination, and of all construction of mental pictures . . . ’ (§26)

F. offers two objections against taking numbers to be subjective ideas:

The objection from multiplicity

If the number two were an idea, then it would have straight away to be
private to me only.. . . We should then have it might be many millions of twos
on our hands. . . . As new generations of children grew up, new generations
of twos would continually be being born, and in the course of millennia these
might evolve, for all we could tell, to such a pitch that two of them would
make five. (§27)

The objection from finiteness

Yet in spite of all this, it would still be doubtful whether there existed in-
finitely many numbers, as we ordinarily suppose. 1010, perhaps, might be
only an empty symbol, and there might exist no idea at all, in any being
whatever, to answer to the name. (§27)
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Part III: Views on unity and one

In Part III of GL, F. continues his criticism of other authors, and begins to set out his
own views:

Plan for discussing Part III

• Sketch Frege’s positive view of Zahlangaben: statements of number (§45–54)

• Introduce Frege’s higher-order language

• Outline the object–concept distinction

• Examine Frege’s solution (revisiting his objections against Mill’s account)

• Consider two worries we might have about Frege’s account

§45: F. on Zahlangaben—a sketch

Zahlangaben—statements or ascriptions of number—serve to answer ‘How many?’ ques-
tions, e.g.:6

• The number of moons of Jupiter is four

• Venus has 0 moons

In §45, F. asks once more: ‘when we make a statement of number, what is that of which
we assert something?’

• Mill’s answer: an agglomeration of one or more external objects:

– Objection from units: what number attaches to the agglomeration of cards?
52? 4? etc.

– Objection from universal applicability: we can number items we cannot ag-
glomerate

• F’s answer: a concept.

. . . the content of a statement of number is an assertion about a concept.
This is perhaps clearest with the number 0. If I say “Venus has 0 moons”,
there simply does not exist any moon or agglomeration of moons for any-
thing to be asserted of; but what happens is that a property is assigned
to the concept “moon of Venus”, namely that of including nothing under
it. If I say “the King’s carriage is drawn by four horses”, then I assign
the number four to the concept “horse that draws the King’s carriage”.
(§46)

6Perhaps not all ‘How many?’ questions. The matter is discussed by Rumfitt, Concepts and Counting,
Proceedings of the Aristotelian Society 102 (2002).

14



Concept v. object

A fundamental principle in GL

GL’s Introduction: F. offers the following as one of ‘three fundamental principles’ (p. X):

• ‘never to lose sight of the distinction between concept and object’

What is this distinction?

• Various aspects of the distinction surface in §46–54

• F. gives a much fuller account in ‘Function and Concept’7

• NB: the later work, a talk given in 1891, incorporates some additional features
characteristic of the Grundgesetze which are not present in GL

• Frege’s higher-order logic effectively implements a simple type theory (although
its somewhat tacit)

The simple theory of types

• Let’s start by defining types and levels:

– Define the set of (simple) types to be the least inclusive set that contains 0
and contains pτ1, . . . , τkq for any finite sequence of its members τ1, . . . , τk.

– The level of type 0 is 0; the level of type pτ1, . . . , τkq is the least integer to
exceed the level of each of τ1, . . . , τk (i.e. the maximum level plus one).

– Type pτq is monadic; type pτ1, . . . , τkq is polyadic with arity k.

• For example, a first-order language (e.g. L2) contains:

– individual variables: x, y, z, . . . (type 0, level 0).

– individual constants: a, b, c, . . . (type 0, level 0).

– predicate constants of various arities: P n, Qn, Rn (types (0), (0,0), (0,0,0),
etc., level 1).

• A simply typed language adds further terms:

– variables in each type: xτ , yτ , . . . (type τ).

– constants in each type: aτ , bτ , . . . (type τ).

• An atomic formula is then a string of the form tpt1, . . . , tkq where each ti is a term
(i.e. a variable or a constant) with simple type τi, for i “ 1, . . . , k, and t is a term
with simple type pτ1, . . . , τkq.

• Complex formulas are then formed in the standard way using the usual connectives
( ,Ñ, etc.) and quantifiers (@ and D), which may bind variables of any type.

7In Geach and Black (eds.) Translations from the Philosophical Writings of Gottlob Frege (Blackwell,
1952).
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A Fregean interpretation of type theory

Corresponding to the hierarchy of types, F. posits a hierarchy of entities:

• Here’s the first few monadic types:

type expression for the entity entity what falls under the entity
0 singular term object –

‘Frege’ Frege (the man himself) –
‘The Equator’ the equator –
Formally: a0, b0, c0, . . .

(0) predicate first-level concept objects
(general term) (properties of objects)

‘ is a logician’ the concept logician Aristotle, Frege, Gödel, . . .
‘Moon of Jupiter’ the concept moon of Jupiter Io, Europa, Ganymede,

Formally: ap0q, bp0q, . . . Callista
P,Q, . . .

((0)) quantifier expression second-level concepts first-level concepts
(properties of concepts)

‘There is at least one’ the concept non-empty concept the concept logician,

Formally: app0qq, bpp0qq, . . . the concept mood of Jupiter,
or: P ,Q, . . . etc., etc.

• There are also polyadic types, e.g.

– a type (0,0) constant—a binary predicate—stands for a relation in which
objects (type 0) stand to objects (type 0).

– a type (0,(0)) constant stands for a relation in which objects (type 0) stand
to monadic first-level concepts (type (0)).

• more generally

– type τ constants stand for type τ entities

– type τ variables range over type τ entities

Some examples

Here’s how we might formalize some English sentences in Frege’s higher-order language:

(6) Aristotle is a logician.

La

or lp0qpa0q

(in Fregean jargon: Aristotle falls under the concept logician)

(7) Plato and Aristotle have some properties in common.

DXpXp^Xaq

or Dxp0qpxp0qpp0q ^ xp0qpa0qq
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(8) Not all monadic second-level concepts have something fall under them

 @XDYXpY q

or  @xpp0qqDyp0qxpp0qqpyp0qq

Five Fregean theses about concepts and objects

(i) Objects are what singular terms denote; concepts are what predicates (general
terms) denote (§47, 51)

(ii) Objects must be sharply distinguished from the proper names that refer to them

(iii) Concepts must be sharply distinguished from the general terms that refer to them

(iv) Concepts are not special sorts of objects (preface, p. X, letter to Marty 1882)8

(v) Concepts are objective (§47). (F. reserves ‘idea’ as the subjective term.)

§46–54: F’s account of Zahlangaben

Consider again:

(5b) There are 0 moons of Venus

0pV q

or 0pp0qqpvp0qq

F: ascriptions of number predicate something of a concept—e.g:

• ‘. . . moons of Venus’ (symbolized: V ) stands for a first-level concept (type (0)).

• ‘There are 0. . . ’ (symbolized 0) stands for a second-level concept (type ((0))).

• (5b) tells us that the first-level concept falls under the second-level concept

• Fregean jargon: (5b) says the number 0 belongs to the concept moon of Venus

Aside: ‘existence is a property of concepts’ (§53)

F. posits tight links between number and quantification—compare:

(9) a. There exists a moon of Jupiter

b. The number of moons of Jupiter is not zero

• Both ascribe the same second-level concept—having at least one thing fall under
it—to the concept moon of Jupiter

• This is the beginnings of the theory of generalized quantifiers :

– Some A is B iff |AXB| ą 0

8Quoted by Dummett in his Frege: Philosophy of Mathematics (Duckworth, 1992), p. 90.
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– No A is B iff |AXB| “ 0

– Every A is B iff A Ď B iff |A´B| “ 0

• We may treat ‘some’, ‘no’ and ‘every’ as type ((0),(0)) expressions.

§48: the objection from units (revisited)

How does F’s view fare with his objections against Mill?

• Unlike Mill, F’s view ascribes the correct truth-values to (4a) and (4b).

(4a) The cards are fifty-two TRUE

52pCq

(4b) The suits are fifty-two FALSE

52pSq

• ‘The cards’ (C) and ‘the suits’ (S) stands for two different first-level concepts

• ‘. . . are 52’ (52) stands for a second-level concept

• But only the first concept falls under the second-level concept denoted by 52 (we
may suppose—assuming a single jokerless pack)

• Consequently, (4a) is true and (4b) is false (as we’d expect)

§48: the objection from universal applicability (revisited)

• Zero poses no problem: concepts such as moon of Venus are empty.

• Objects of any kind may be brought under suitable first-level concepts, including
those ill-suited to Millian agglomeration:

– the concept expressed by ‘method of solving my favourite equation’

– the concept major event of the 20th century

Worry 1: might we after all ascribe number to objects (sets)

• Grant—for the sake of argument—that F’s arguments succeed against Mill

• Mill’s ascribes numbers to objects—specifically: agglomerations

• Can we avoid F’s objections with a judicious choice of number-bearing objects?

• Cantorian view: number is a property of sets, e.g.:

|tIo, Europa, Ganymede, Callistau| “ 4 |H| “ 0

The Cantorian view seems to share the advantages that F. has over Mill.
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The objection from units (re-revisited)

• Let c :“ tx : x is a card in the packu and s :“ tx : x is a suit in the packu

• The sets c and s have different cardinality: |c| “ 52, |s| “ 4 (we may suppose)

• Like Frege, this view ascribes the correct truth-values to (4a) and (4b)

(4a) The cards are fifty-two TRUE

|c| “ 52

(4b) The suits are fifty-two FALSE

|s| “ 52

• Even if there’s just one agglomeration of cards, there’s nothing to stop the two
sets having different cardinalities

The objection from universal applicability (re-revisited)

• Zero poses no problem: |tx : x is a moon of Venusu| “ 0

• There is no problem counting abstract objects: |t0, 1u| “ 2

Worry 2: does F’s account handle harder cases?

• F. raises some less-straightforward examples of Zahlangaben:

(10) The number of inhabitants of Germany is 83 million, but used to be 82
million (cf. §46)

• Rumfitt suggests that further would-be Zahlangaben cause trouble:9

(11) The number of legs on a normal dog is four

(12) There are four gallons of water in the tank

9Concepts and Counting, as cited in note 6. His response to (12) is to deny that all answers to ‘How
many?’-questions should be analysed as per F’s account of Zahlangaben. Answers to questions of
quantity like (12) call for a different analysis.

19



Part IV: The concept of Number

In Part IV of GL, Frege gives his definition of Number, and sketches his logicist con-
struction of arithmetic, which centres on what is now usually called Hume’s Principle:

(HP) The Number of F s = The Number of Gs iff F and G are equinumerous

@F@Gp#F “ #GØ F « Gq

• He argues that numbers are ‘self-subsistent objects’ (week 4)

• HP is floated as a definition of ‘The number of F s’—but rejected because of the
Julius Caesar problem (week 5)

• F. instead defines ‘The number of F s’ in terms of extensions, and sketches his
logicist reduction of arithmetic to logic and definitions (week 6)

Numbers—objects or properties of concepts?

Number, F. has argued, is not a property of objects. This leaves (at least) two options:

• numbers are objects (Frege’s view—see, e.g., §57)

• numbers are properties of concepts (i.e. second-level concepts).

Consider two ways in which we might state the number of Jupiter’s moons:

(13) a. Jupiter has four moons

b. The number of Jupiter’s moons is four

• in (13a) ‘four’ occurs as an adjective (adjectival use)

• in (13b) ‘four’ occurs as an apparent singular term (substantival use)

The different surface forms of (13a) and (13b) suggest different logical forms:

(13-adj) 4pJq

(13-sub) #pJq “ 4

• as per F’s account of Zahlangaben, both say something about the concept J

– (13-adj): J falls under the second-level concept expressed by 4p ¨ q

– (13-sub): J falls under the second-level concept expressed by #p ¨ q “ 4

• but in (13-sub), the complex predicate #p ¨ q “ 4 has additional structure:

– the identity-predicate “ stands for an object–object relation

– the function-expression # stands for a (second-level) function mapping con-
cepts to objects.

– the singular-term 4 stands for an object (if anything)

• in contrast, (13-adj) makes no ontological commitment to numbers
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Three views of number-terms

• adjectival uses of number term are primary (adjectival strategy)10

– substantival uses—e.g. (13b)—are then explained (or explained away) in terms
of the adjectival ones, such as (13a)

– e.g. substantival number talk is a façon de parler :

∗ the substantival surface form of (13b) is misleading

∗ both (13a) and (13b) have the logical form (13-adj)

• substantival uses of number term are primary (substantival strategy)

– adjectival uses—e.g. (13a)—are then explained in terms of the substantival
ones, such as (13b)

– e.g. the adjectival surface form masks a hidden ontological commitment:

∗ both (13a) and (13b) have the logical form (13-sub)

• neither use is primary (mixed view)

– English contains both numerical quantifiers and numerals

– the difference in surface form may be taken at face value:

∗ the ostensibly adjectival (13a) has the logical form (13-adj)

∗ the ostensibly substantival (13b) has the logical form (13-sub)

§57: F. appears to endorse a hardline substantival view

In the proposition “the number 0 belongs to the concept F”, 0 is only an
element in the predicate (taking the concept F to be the real subject). For
this reason I have avoided calling a number such as 0 or 1 or 2 a property of a
concept. Precisely because it forms only an element in what is asserted, the
individual number shows itself for what it is, a self-subsistent object. . . . we
should not . . . be deterred by the fact that in the language of everyday life
number appears also in attributive constructions. This can always be got
round. For example, the [apparently adjectival (13a)] can be converted into
[the substantival (13b)]. (§57)

10We borrow the first two labels from Dummett, Frege: Philosophy of Mathematics, p. 99 (Duckworth,
1991). See also Wright, Frege’s Conception of Numbers as Objects, ch 1
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§55–6: against an adjectival view

§55: ‘tempting’ to give the following definitions of numerical quantifiers

• the number 0 belongs to F : D0xFx :“ @x Fx

• the number n` 1 belongs to F : Dn`1xFx :“ DxpFx^ DnypFy ^ y ‰ xqq11

The definitions suggest a version of the adjectival view

• a number is a second-level concept, expressed by D0, D1 etc.

• e.g. (13b) says, in effect, the concept J falls under the second-level concept D4.

§56: objection 1—Julius Caesar

. . . we can never—to take a crude example—decide by means of our defini-
tions whether any concept has the number Julius Caesar belonging to it,
or whether that same familiar conqueror of Gaul is a number or is not. (§56)

§56: objection 2—unprovable identity

• F. objects that we cannot prove the following:

p˚q DnxFx and DmxFx implies n “ m

• ‘Thus we should be unable to justify the expression “the number which belongs to
the concept F”’ (§56)

Reply 1: Caesar is not a second-level concept(!)

• on the adjectival view, we might define Q is a number—N pQq—as follows:

– N pQq :“ DF pQpF q ^ @GpF « GØ QpGqqq

– i.e. Q is the denotation of an exact numerical quantifier ‘there are exactly k’

• N is a third-level concept, under which only second-level concepts fall

• there’s no question of Caesar (a Fregean object) falling under N

Reply 2: what about the analogue of identity for second-level concepts?

• in p˚q, the use of the identity n “ m presupposes that numbers are objects.

• the object–object identity in (˚) needs to be replaced with an analogue for concepts:

(˚˚) DnxFx and DmxFx implies Dn ” Dm

• this is provable, assuming N pDnq, N pDmq and Dn ” Dm :“ @GpDnxGxØ DmxGxq
12

11Compare Frege’s natural language formulations in §55.
12Compare Dummett, ibid., p. 107
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A Fregean argument for numbers being objects

Harty Field regiments Crispin Wright’s reconstruction of Frege’s argument:13

(0) Number-terms like ‘2’ and ‘the number of Jupiter’s moons’ function syntactically
as singular terms (Fregean proper names)

(11) Number-terms like ‘2’ and ‘the number of Jupiter’s moons’ function semantically
as singular terms

(1) Numbers, if there are any, are objects

F’s account of object supports (11) ñ (1)

• assuming (11), the referents of numbers-terms like ‘2’, if any, are objects (e.g. §51)

F. gives support for (0) in §57

• ‘the number of F s’ is a singular definite description—a Fregean proper name

• number terms occur in identity statements: e.g. ‘1 + 1 = 2’

• adjectival ascriptions, e.g. (13a), can be ‘converted into’ substantival ones, e.g. (13b)

What supports (0) ñ (11)?

• GL appears silent: after §57, F. defends (1) against objections, but offers no explicit
argument for (11)

• Wright suggests we look to one of Frege’s three methodological principles:

– the Context Principle (CP) requires us ‘never to ask for the meaning [Bedeu-
tung ] of a word in isolation, but only in the context of a proposition’ (GL,
p. X)

• Wright claims CP closes the gap between (0) and (11)

[CP] is to be understood as cautioning us against the temptation to
think that . . . after we are satisfied that, by syntactic criteria, [a given
class of] expressions are functioning as singular terms in sentential con-
texts, a further genuine question can still remain about whether their
role is genuinely denotative at all; . . . To suppose that such a question
does arise is exactly to suppose that it is legitimate to inquire whether
such an expression genuinely does denote anything in isolation from con-
sideration of the part which it standardly plays in whole propositions.
(Frege’s Conception, p. 14)

13See Field’s Critical Notice of Frege’s Conception of the Numbers as Objects by Crispin Wright,
Canadian Journal of Philosophy 14 (1984); we follow Field’s numbering.
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§62: How is the concept of Number ‘given to us’?

§62 opens with a famous passage:

How, then, are the numbers to be given to us, if we cannot have any ideas
or intuitions of them? Since it is only in the context of a proposition that
words have any meaning, our problem becomes this: To define the sense of
a proposition in which a number word occurs. That, obviously leaves us a
very wide choice. But we have already settled that number words are to
be understood as standing for self-subsistent objects. And that is already
enough to give us a class of propositions which must have a sense, namely
those which express our recognition of a number as the same again. (§62)

Let’s break this down:

• F’s opening question—how are numbers ‘given to us’?—raises two issues:

– Epistemic issue: how can we come to know about numbers?

∗ Pace empiricism, not by observation and experiment.

∗ Nor, according to F, by intuition (as in geometry)

∗ But, if not by perceptual or intuitive channels, then how?

– Semantic issue: how can we refer to numbers?

∗ e.g. how did the numeral ‘1’ come to refer to the number 1?

∗ Surely not by ostension: e.g. ‘the numeral ‘1’ refers to that thing !’

∗ By description: e.g. ‘The number 1 is the least natural number ą 0’?

∗ This only works if we’ve already defined the terms used to frame the
description (‘natural number’, ‘0’, etc.)—how do we define these?

∗ But if not by ostension or description, then how?

• In reply, F. applies the CP:

– to confer meaning on number terms it suffices to assign content to whole
sentences containing number terms.

– specifically, numerical identity statements, e.g. ‘#F “ #G’14

∗ after all, number terms—F. thinks he has now settled—stand for objects

∗ so numerical identity statements must have content

• F. transforms the problem of ‘access’ to numbers into something more tractable:

– we have to ‘define the sense’ of #F “ #G

14Informally: ‘the number of F s is identical to the number of Gs’
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A false start: defining ‘Number’ via abstraction principles

§63ff: F. considers an approach he ultimately rejects:

• the sense of #F “ #G is given by HP (Hume’s Principle, §63)

• three doubts are considered (§63–67)

• F. upholds the last: the Caesar problem (§66-7)

• F. instead explicitly defines #F in terms of extension, and sketches a logicist
recovery of arithmetic (week 6, §68–83)

HP and other abstraction principles

We nowadays classify HP, and other similar axioms as abstraction principles (APs):

(HP) The Number of F s = the Number of Gs iff F and G are equinumerous

#F “ #GØ F « G

(DE) The direction of line a = the direction of line b iff a and b are parallel

dirpaq “ dirpbq Ø a // b

• DE (the direction equivalence) is the focus of F’s discussion in GL

• HP is left somewhat tacit

The axioms share a common form:

(AP) The R-abstract of α = the R-abstract of β iff α and β stand in relation R

§Rpαq “ §Rpβq Ø Rpα, βq

• the left-hand-side (LHS) is an abstract–abstract identity statement

• the right-hand-side (RHS) is what we may call an equivalence statement :

– α and β are suitable intermediaries :

∗ in HP: F and G are concepts

∗ in DE: a and b are objects (lines)

– R stands for an equivalence relation on intermediaries of the relevant type:

∗ in HP: the equivalence relation admits a logical characterization (in second-
order logic):

F « G :“ DR
`

@xpFxÑ D!ypRxy ^Gyqq ^ @ypGy Ñ D!xpRxy ^ Fxqq
˘
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‘Recarving’ content

How do APs help with epistemic or semantic ‘access’ to numbers?

• recall, F. seeks to ‘construct the content of a judgment which can be taken as an
identity such that each side of it is a number’ (§63)

– F’s discussion takes place at one remove, focusing on DE

• the content of dirpaq “ dirpbq is stipulated to be that of a // b:

Now in order to get, for example, from parallelism to the concept of
direction, let us try the following definition.

The proposition
“line a is parallel to line b”

is to mean the same as

“the direction of line a is identical with the direction of line b”. (§65)

• the concept of direction may then be explicitly defined in terms of dirp¨q:

– x is a direction iff Dapx “ dirpaqq

• the same argument—‘in essentials’—applies in the case of numbers (see §65, n. 1)

– the content of #F “ #G is stipulated to be that of F « G

– the concept of Number may then be explicitly defined in terms of #

∗ x is a Number iff DF px “ #F q

Epistemic issue—revisited

• the equivalence statement on the RHS of DE and HP is relatively unproblematic

– e.g. we may perceive that (concrete) line segments are parallel: a // b.

– similarly, perhaps, there’s no difficulty in learning F « G (in many cases)

• the AP then provides an epistemic bridge to the prima facie problematic LHS

– the LHS is stipulated to coincide in content with the RHS

– this licenses us to infer dirpaq “ dirpbq from a // b

– similarly, we may infer #F “ #G from F « G

Semantic issue—revisited

• HP settles the content of whole sentences containing number terms

• by CP, the content of terms like #F is settled by the content of whole sentences
containing them
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A ‘very odd kind of definition’

• F’s ‘definition’ via DE doesn’t take a certain familiar form:

– e.g. googol “df 10100

• The ordinary way to proceed would be as follows:

– first, explicitly define direction terms: e.g. dirpaq “df . . .

– given the meaning of other expressions (e.g. “), this settles the content of
sentences (e.g. dirpaq “ dirpbq)

• F. reverses the usual order of explanation:

– first, F. specifies the meaning of dirpaq “ dirpbq

– given CP, this settles the content of dirpaq and dirp¨q

Doubt 1: isn’t “ already defined?

• ‘We are . . . proposing not to define identity specially for [the case of numbers], but,
by taking the concept of identity as already known, to arrive by its means at that
which is to be regarded as identical’ (§63)

• a statement about parallelism is thereby ‘taken as an identity’:

The judgement ‘line a is parallel to line b’, or, using symbols, a{{b, can
be taken as an identity. If we do this, we obtain the concept of direction,
and say: ‘the direction of line a is identical with the direction of line b’.
Thus we replace the symbol {{ with the more generic symbol “, through
removing what is specific in the content of the former and dividing it
between a and b. We carve up the content in a way different from the
original way, and this yields us a new concept. (§64)

Doubt 2: the laws of identity

• ‘are we not liable, through using such methods, to become involved in conflict with
the well-known laws of identity?’

– Reflexivity: t “ t

– Substitutivity (Leibniz’s Law):15 s “ tÑ pφpsq Ñ φptqq

• worry: what if, e.g. F is not R-equivalent to F , then AP tells us §RF ‰ §RF?

• response: we should need to justify our definition by showing that the laws of
identity are sustained (§65)

15Caution: ‘Leibniz’s Law’ is sometimes used to label more controversial principles such as the identity
of indiscernibles; the relatively modest formulation of the indiscernibility of identical capture by
Substitutivity is often accepted as a logical truth
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Doubt 3: the Julius Caesar objection

[Our definition] does not provide for all cases. It will not, for instance, decide
for us whether England is the same as the direction of the Earth’s axis—if I
may be forgiven an example which look nonsensical. (§66)

• HP settles the content of #F “ #G but not (14) or (15):

(14) The Number of F s = Julius Caesar (JC) (The Caesar problem)

#F “ q

(15) The Number of F s is Roman (The Roman problem)

Rp#F q

• F’s response: give up on HP as a definition and explicitly define #F .

• after his lengthy discussion, F’s volte face is surprising—is he too quick?

Response 1: isn’t it obvious that JC is not a number?

• F. seems to think so; but doesn’t think this resolves the Caesar problem

Naturally no one is going to confuse England with the direction of the
Earth’s axis; but that is no thanks to our definition of direction. (§66)

– if HP defines Number, should it not settle obvious number facts?

• on closer reflection, is it really so obvious—how do we know JC is not #F?

– the obvious strategy exploits Leibniz’s law—#F ‰ JC since:

∗ JC is Roman (a non-Number/person/concrete)

∗ #F is not Roman (a Number/non-person/non-concrete)

– but this strategy confronts the Roman problem—how do we know that #F
is non-Roman or that JC is a non-number, etc?

Response 2: do we need to settle number–person identities?

• do all declarative sentences have truth-values? e.g. ‘Green ideas sleep furiously’

• moreover, arithmetic is unaffected if ‘JC “ #F ’ is left contentless

• on the other hand, if #F and JC are objects, isn’t there a fact of the matter
whether or not they are the same object?

Response 3: might we supplement HP with further constraints?

• Hale and Wright:16 Sortal concepts F and G (e.g. Number and person) overlap if
and only if some F–F and G–G identities have the same truth-conditions.

16For discussion, see To Bury Caesar in their The Reason’s Proper Study (OUP, 2001).
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Logicism

• Arithmetical logicism (first pass): arithmetic is reducible to logic

– The strength (and philosophical interest) of this thesis varies depending on
what we mean by (i) ‘logic’, (ii) ‘arithmetic’ and (iii) ‘reducible to’17

(i) F’s logic: a higher-order logic of the sort developed in Begriffsschrift

Frege’s logic permits second-order quantification and admits ‘comprehension axioms’.

(ii) Arithmetic: second-order Peano arithmetic (PA2)

We can axiomatize PA2 in the language of second-order logic enriched with:

• singular term: 0 (“zero”)

• unary predicate: N (“natural number”)

• binary predicate: P (“precedes”)

Fregean Jargon: Pmn glossed as “n follows in the series of natural numbers directly after
m”, we say “n is an (immediate) successor of m” (intended interpretation: m`1 “ n)18

• Zero is a natural number

N0

• Every natural number has a successor

@xpNxÑ DyPxyq

• A successor of a natural number is a natural number

@x@ypNx^ Pxy Ñ Nyq

• A natural number has at most one successor (successor is a function)

@x@y1@y2pNx^ Pxy1 ^ Pxy2 Ñ y1 “ y2q

• No two natural numbers have the same successor (successor is injective)

@x1@x2@ypNx1 ^Nx2 ^ Px1y ^ Px2y Ñ x1 “ x2q

• Zero is not the successor of any natural number

@xpNxÑ  Px0q

• Mathematical Induction: if a property F is (i) had by 0 and (ii) had by any
successor of every natural number which has F , then every natural number has F

@F pF0^ @x@ypNx^ Fx^ Pxy Ñ Fyq Ñ @xpNxÑ Fxqq

17See Rayo’s Logicism Reconsidered in Shapiro (ed.) The Oxford Handbook of Philosophy of Mathe-
matics and Logic for helpful discussion.

18Compare Boolos, Frege’s Theorem and the Peano Postulates, in his Logic, Logic, and Logic (Harvard
UP), 293).
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(iii) Reducible to: provable from (given suitable definitions)

• Frege’s arithmetical logicism (second pass): arithmetic is reducible to logic:

– i.e., the non-logical expressions of PA2 (0, N and P ) can be defined in the
language of Frege’s logic

– and, with 0, N and P defined, the axioms of PA2 are provable in Frege’s logic

§68–83: Frege’s construction of the natural numbers

Frege’s strategy

(A) Explicit definition of # (§68)

(B) Derives Hume’s Principle (§73)

(C) Defines: 0 (§74)

(D) Defines: P (§76)

(E) Defines ancestral (§79–81)

(F) Defines: N (§83)

(A) ‘The Number which belongs to the concept F ’

the Number which belongs to the concept F is the extension of the concept
“equal [equinumerous] to the concept F” (§68)

• Definition of # (§68): #pF q “ tX : X « F u

– notation: tX : ΦpXqu is the extension of concept Φ.

– F « G :“ DR
`

@xpFxÑ D!ypRxy ^Gyqq ^ @ypGy Ñ D!xpRxy ^ Fxqq
˘

∗ e.g., #pnon-self-identicalq “ tnon-self-identical, round-square,male-vixen, . . .u

∗ #pmoon of Jupiterq “ tmoon of Jupiter, point of the Compass, . . .u

• Definition of [Cardinal] Number (§72): Cardpxq “df DF px “ #pF qq.

– note: ‘Number’ so defined includes infinite cardinal numbers.

(B) HP derived

• from the definition of # (and assumptions about extensions) F. derives HP:

(HP) #pF q “ #pGq Ø F « G
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(C) ‘Zero’

0 is the Number which belongs to the concept “not identical with itself”
(§74)

• Definition of zero: 0 “df #px ‰ xq

(D) ‘follows in the series of natural numbers directly after’

I now propose to define the relation in which every two adjacent members
of the series of natural numbers stand to each other. The proposition:

“there exists a concept F, and an object falling under it x, such
that the Number which belong to the concept F is n and the
Number which belongs to the concept ‘falling under F but not
identical with x’ is m”

is to mean the same as

“n follows in the series of natural numbers directly after m” (§76)

• Definition of successor:

Pmn “df DFDxpFx^#pF q “ n^#pFz ^ z ‰ xq “ mq

(E) Ancestral

Let Rxy express a binary relation. Frege defines ‘y follows x in the R-series’. This
is known as the (strict) ancestral of Rxy, which we’ll write R‹xy:19

• Definition of ancestral:

– HerRpXq “df @s@tpXs^RstÑ Xtq

– R‹xy “df @X
`

p@spRxsÑ Xsq ^ HerRpXqq Ñ Xy
˘

• Informally:

– HerRpXq says X is closed under R

– R‹xy says we can reach y from x in finitely many R-steps.

∗ e.g. Parent‹px, yq = Ancestorpx, yq

19Zalta’s SEP article, Frege’s Theorem and Foundations for Arithmetic, provides helpful discussion.
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(F) ‘Natural Number’ (§§79–83)

Frege uses the ancestral to extract order relations out of P and to define N .

• Definition of natural number

– x ă y “df P
‹xy (‘y follows in the P -series after x’)

– x ď y “df x ă y _ x “ y

(‘y is a member of the P -series beginning with x’)

– Nx “df 0 ď x

(‘x is member of the series of natural numbers beginning with 0’)

• F. sketches how to prove versions of the axioms of PA2 using these definitions

How F. establishes the infinity of the number series (a sketch)

• the leading idea is to show:

– 0 immediately precedes 1 :“ #px ď 0q

– 1 immediately precedes 2 :“ #px ď 1q

– 2 immediately precedes 3 :“ #px ď 2q

• more generally

– n immediately precedes n1 :“ #px ď nq

• F shows this using induction (which is licensed by the definitions of ‘natural num-
ber’)

Why numbers had to be objects?

• F takes #pF q to be an object

– the extension of the concept equinumerous with F

• Could #pF q instead be a second-order concept?

– the concept equinumerous with F

– 0 and P may then be defined much as before

This runs into trouble on finite domains

• Suppose, e.g., there is just one object a.

– 0 “ #px ‰ xq – concept under which empty concepts fall

– 1 “ #px “ aq – concept under which singleton concepts fall

– 2 “ ? (no two-membered concepts)
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Part V: Conclusion

Logicism in GL

• What does F’s construction show?

I hope I may claim in the present work to have made it probable that
the laws of arithmetic are analytic judgments and consequently a pri-
ori. Arithmetic thus becomes simply a development of logic, and every
proposition of arithmetic a law of logic, albeit a derivative one. (§87)

• For F. (§3):

– analytic truths are those provable from ‘general logical laws and on definitions’

– a truth is a priori if ‘its proof can be derived exclusively from general laws,
which themselves neither need nor admit of proof’

• Why ‘probable’?

– GL only sketches F’s construction.

– GL does not specify a logical system or carry out gap-free proofs.

Extensions—unexplained in GL

• Footnote (§68): ‘I assume that it is known what the extension of a concept is’

• Grundgesetze: F. infamously posits Basic Law V:

(BLV) tX : ΦpXqu “ tX : ΨpXqu Ø @XpΦpXq Ø ΨpXqq

Caesar’s revenge?

• How does this help with tX : ΦpXqu = Julius Caesar?

Logicism in the Grundgesetze

Frege elaborates on his sketch in his Grundgesetze which precisely specifies a logical
system and gives line-by-line gap-free proofs.

• Grundgesetze Logicism: Arithmetic is reducible to a higher-order logic, includ-
ing Basic Law V.

– Frege (1893): Basic Law V is a law of logic.

– Russell (1902): Basic Law V proves a contradiction (in Frege’s logic).

– Grundgesetze logicism (so characterized) is true but uninteresting.

33



‹. Neologicism post Frege

Can anything be salvaged from GL in the aftermath of Russell’s paradox?

Frege’s Theorem. Arithmetic is reducible to logic and Hume’s Principle (HP): second-
order logic enriched with Hume’s Principle proves the axioms of PA2, given Frege’s
definitions of 0, P and N .

HP is not inconsistent! HP has a natural model with the domain t0, 1, . . .u Y tℵ0u

Fregean logicism v. neo-Fregean neologicism

Wright and Hale’s neologicist programme seeks to attain some of the philosophical goals
of F’s logicism:

Frege (1893) Wright & Hale

BLV logical truth contradiction

HP logical truth not a logical truth
not a definition a definition-like conceptual truth
analytic, a priori analytic, a priori

What is the philosophical significance of Frege’s theorem?

A neologicist reconstruction:

• HP is an a priori conceptual truth (akin to a definition, true by stipulation)

• deductions (in second-order logic) preserve a priori knowability

• Frege’s theorem provides an a priori route to knowledge of the axioms of PA2

The programme has provoked many objections—we consider (just) two from Boolos.20

20See, esp. Boolos’s Is HP Analytic, in his Logic, Logic, and Logic (OUP, 1998) (LLL) versus Wright’s
Is Hume’s Principle Analytic in Wright and Hale’s The Reason’s Proper Study (OUP, 2001) (RPS).
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Objection 1: the ontological concern

Boolos objects: is HP really a conceptual truth—analytic? (LLL 303–8)

• Analytic truths, traditionally conceived, ‘lack content’:

they make no significant or substantive claims or commitments about
the way the world is; in particular, they do not entail the existence either
of particular objects or of more than one object. (LLL 303)

• HP entails that there are infinitely many items

• how, then, can HP be thought to be analytic?

• Instead, we might think HP analogous to (16):

(16) The (present) king of France is royal.

– No analytic guarantee that:

∗ there’s a (unique) king of France

∗ there’s a number of F s

• if there are analytic truths in the vicinity, they have a conditional character:

(17) If there is a unique king of France, the king of France is royal.

(18) Dh@F@GphpF q “ hpGq Ø F « Gq Ñ @F@Gp#F “ #GØ F « Gq

Wright replies (RPS 308–312)

• Wright rejects the traditional ontologically-neutral conception of analyticity

• ‘laying down’ HP ensures that there is no gap between:

– HP’s LHS—#F “ #G—which logically entails the existence of numbers

– HP’s RHS—F « G—which doesn’t

the neo-Fregean’s intention in laying down Hume’s Principle as an
explanation is to so fix the concept of cardinal number that the
equinumerosity of concepts F and G is itself to be necessary and
sufficient . . . for the identity of the number of F s with the number
of Gs, so that nothing more is required for the existence of those
numbers beyond the equinumerosity of the concepts. (RPS 312)

A standoff?—‘one person’s ponens is another’s tollens’ (LLL 308)

• B&W: if HP is analytic, some analytic truths have ontological commitments

– Wright accepts the antecedent—he’s happy to apply modus ponens

– Boolos rejects the consequent—modus tollens beckons
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Objection 2: bad company

The Nuisance Principle (RPS 318–20)

• consider the abstraction principle (AP) that Wright dubs the Nuisance Principle:

(NP) nF “ nGØ finitely many things are either F or G but not both

– HP, recall, has models, but its models always have infinite domains

– NP, too, has models, but its models always have finite domains

– so HP and NP are incompatible: no model of one is a model of the other

• if we can stipulate HP true (as a definition), we can stipulate NP false

• but, then, what stops us instead stipulating NP true, and HP false?

Wright’s response: good APs are conservative

• not every AP can be stipulated true (e.g. BLV can’t)—only the ‘good’ ones

• Wright: a good AP is ‘conservative’

– Σ is conservative over a theory T if, roughly, ‘its addition to that theory [i.e.
Σ + T] results in no new theorems about the old ontology [i.e. the items T
is about]’ (RPS 319)

– NP is non-conservative over theories which don’t entail a finite universe

• so, unlike HP, we have a reason to think NP can’t be stipulated true

Weir: conservative APs may be incompatible

• so-called Distraction Principles have the form:21

(DP) dF “ dGØ F and G are coextensive or are both BIG

– different APs result from different definitions of ‘BIG’

– e.g. BIG = infinite, BIG = uncountably infinite, etc.

• Weir shows that some pairs of conservative DPs are incompatible

• Response: search for a more demanding criterion for ‘good’ APs?

21See Weir’s Neo-Fregeanism: an Embarrassment of Riches, Notre Dame Journal of Formal Logic 44
(2003.)
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