INTRODUCTION TO LOGIC

Lecture 1
Validity
Introduction to Sets and Relations.

James Studd

Pure logic is the ruin of the spirit.
Antoine de Saint-Ezupéry
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-
Why logic?

Logic is the scientific study of valid argument.

@ Philosophy is all about arguments and reasoning.

Logic allows us to rigorously test validity.

Modern philosophy assumes familiarity with logic.

@ Used in linguistics, mathematics, computer science,. . .

Helps us make fine-grained conceptual distinctions.

Logic is compulsory.
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1.5 Arguments, Validity, and Contradiction

Validity 1/3

First approximation.

When an argument is valid, the truth of the premisses
guarantees the truth of the conclusion. 10

An argument is valid if it ‘can’t’ be the case that all of the
premisses are true and the conclusion is false.

e Validity does not depend on contingent facts.
e Validity does not depend on laws of nature.

e Validity does not depend on the meanings of
subject-specific expressions.

e Validity depends purely on the ‘form’ of the argument.
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Argument 2 revisited

Argument 2 Valid

Zeno 1s a tortoise.
All tortoises are toothless.
Therefore, Zeno is toothless.

Argument 2a Valid

Boris Johnson is a Conservative.
All Conservatives are Liberal Democrats.
Therefore, Boris Johnson is a Liberal Democrat.

Argument 2b Valid

Radon is a noble gas.
All noble gases are chemical elements.
Therefore, Radon is a chemical element.

Note: argument 2a is a valid argument with a false conclusion.
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Validity 3/3.

Characterisation (p. 19)

An argument is logically valid if and only if:
there is no [uniform| interpretation |of subject-specific
expressions| under which:

(i) the premisses are all true, and

(ii) the conclusion is false.

e Each occurrence of an expression interpreted in the
same way

e Logical expression keep their usual English meanings.
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Subject-specific versus logical expressions

Examples: logical terms

all, every, some, no.
not, and, or, unless, if, only if, if and only if.

Examples: subject-specific terms

Zeno, Boris Johnson, France, The North Sea, Radon, soap,
bread, GDP, logical positivism, ...

tortoise, toothless, Conservative, nobel gas, philosopher,
chemical element, ...

loves, owns, reacts with, voted for, ...
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1.5 Arguments, Validity, and Contradiction

Argument 2 revisited again

Argument 2 Valid
Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

Argument 3 Not valid

Boris Johnson is a Conservative.
No Conservatives are Liberal Democrats.
Therefore, Boris Johnson is a Liberal Democrat.

Argument 4 Not valid

Radon is a noble gas.
All noble gases are chemical elements.
Therefore, air is a chemical element. 30




Course overview

Validity; Introduction to Sets and Relations
Syntax and Semantics of Propositional Logic

Formalization in Propositional Logic

S

The Syntax of Predicate Logic

The Semantics of Predicate Logic
Natural Deduction

Formalization in Predicate Logic

2o 2 R

Identity and Definite Descriptions
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A set is a collection of zero or more objects.

@ The objects are called elements of the set.

@ a € b is short for ‘a is an element of set b’.

Examples

@ The set of positive integers less than 4:
{1,2,3} or {n : n is an integer between 1 and 3}

@ The set of positive integers:
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Sets 1/2

Characterisation

A set is a collection of zero or more objects.

@ The objects are called elements of the set.

@ a € b is short for ‘a is an element of set b’.

Examples

@ The set of positive integers less than 4:
{1,2,3} or {n : n is an integer between 1 and 3}

@ The set of positive integers:
{1,2,3,4,...} or {n:n >0}

@ The empty set:
{} or {x: x is a round square} or ()
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Sets 2/2

Fact about sets

Sets are identical if and only if they have the same elements.

The following sets are all identical:
@ {Lennon, McCartney, Harrison, Ringo}
e {Ringo, Lennon, Harrison, McCartney }
e {Ringo, Ringo, Ringo, Lennon, Harrison, McCartney }
e {x: x is a Beatle}

o {x: x sang lead vocals on an Abbey Road track}
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Ordered pairs

Characterisation

An ordered pair comprises two components in a given order.

@ (d,e) is the ordered pair whose first component is d and
whose second component is e, in that order.

Example

(London, Munich) # (Munich, London)
{London, Munich} = {Munich, London}
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Relations
Camilla Charles Diana
Duchess of Cornwall Prince of Wales  Princess of Wales
Catherine Prince William Prince George

Duchess of Cambridge Duke of Cambridge  of Cambridge

The relation of having married

{(Charles, Diana), (Diana, Charles),
(Charles, Camilla), (Camilla, Charles),
(Kate, William), (William, Kate), ...}
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1.2 Binary relations

Worked example

Write down the following relation as a set of ordered pairs.
Draw its arrow diagram. 10

The relation of being countries in GB sharing a border

{(England, Scotland), (Scotland, England),
(England, Wales), (Wales, English)}

Scotland

Wales England



Relations
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Relations

Definition (p. 8)

A set R is a binary relation if and only if it contains only
ordered pairs.

Informally: (d,e) € R indicates that d stands in R to e.

@ The relation of having married.
o {(Kate, William), (Charles, Camilla), - - - }
o {{(d,e) : d married e}.



Relations

Definition (p. 8)

A set R is a binary relation if and only if it contains only
ordered pairs.

Informally: (d,e) € R indicates that d stands in R to e.

@ The relation of having married.
o {(Kate, William), (Charles, Camilla), - - - }
o {{(d,e) : d married e}.

e The empty set: ()
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Properties of relations 1/3

Definition (p. 9)

A binary relation R is reflexive on a set S iff:
e for all d in S: the pair (d,d) is an element of R. 15

Informally: every member of S bears R to itself.

. .

Example Reflexive on the set of human beings

@ The relation of being the same height as

Example Not reflexive on this set

@ The relation of being taller than

Example Not reflexive on {1,2,3}

o {(1,1),(2,2),(1,3)}




Properties of relations 1/3

Definition (p. 9)

A binary relation R is reflexive on a set S iff:
e for all d in S: the pair (d,d) is an element of R. 15

Informally: every member of S bears R to itself.

. .

Example Reflexive on the set of human beings

@ The relation of being the same height as

Example Not reflexive on this set

@ The relation of being taller than

Example Not reflexive on {1,2, 3}
o {(1,1),(2,2),(1,3)} Reflexive on {1, 2}
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1.2 Binary relations

Reflexivity on S

Every point in S has a “loop”.

Q
® ([ ]

Key: Member of S: @
Non-member of S: *

(Y
x

(Not Reflexive on S)
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Definition (p. 9)

A binary relation R is symmetric on set S iff:
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Properties of relations 2/3

Definition (p. 9)
A binary relation R is symmetric on set S iff:
o for all d,e in S: if (d,e) € R then (e,d) € R.

Informally: any member of S bears R to a second only if the
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Example Not symmetric on this set

@ The relation of being a brother of
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Properties of relations 3/3

A binary relation R is transitive on S iff:

e for all d,e, f in S:
if (d,e) € R and (e, f) € R, then also (d, f) € R

Informally: if any member of S bears R to a second, and the
second also bears R to a third, the first bears R to the third.

o . .
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Properties of relations 3/3

Definition

A binary relation R is transitive on S iff:

e for all d,e, f in S:
if (d,e) € R and (e, f) € R, then also (d, f) € R

Informally: if any member of S bears R to a second, and the
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Example Not transitive on this set

@ The relation of not having the same height (£1lcm)
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Functions

Definition (p. 14)

A binary relation F'is a function iff for all d, e, f:
o if (d,e) € F and (d, f) € F then e = f.

Informally, everything stands in F' to at most one thing.

Example

@ The function that squares positive integers.

{(1,1),(2,4),(3,9),...}

{{x,y) : y = 22, for z a positive integer} 50
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1.3 Functions

F is a function

Everything stands in F to at most one thing (“many-one” or “one-one”)
1— 1 11— =1 1— 1
RN
2 2 2 / 2 2 2
<
3 3 3 3 3— =3

4 4 4— 4 4—4

“one-one” “many-one” “one-many”
function function not a function



A “straightforward and elementary” example

(a) What is a binary relation?

(b) Consider the relation R of sharing exactly one parent:
R ={(d,e) : d and e share exactly one of their parents}

Determine whether R is:
(i) reflexive on the set of human beings
(ii) symmetric on the set of human beings
(iii) transitive on the set of human beings
Explain your answers.
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(a) What is a binary relation?

A binary relation is a set of zero or more ordered pairs.
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Example

A straightforward and elementary example

(b) R={(d,e) : d and e share exactly one of their parents}

(i) Is R reflexive on the set of human beings? No.
I share two parents with myself, not one.

(ii) Is R symmetric on the set of human beings? Yes.
If human beings d and e share exactly one parent,
clearly e and d—the very same people—share exactly
one parent too.

(iii) Is R transitive on the set of human beings? No.
For example, my maternal half-sister Rachel and I
share exactly one parent, and me and my paternal
half-sister Debby share exactly one parent, but Rachel
and Debby share no parents.
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