

# INTRODUCTION TO LOGIC

## Lecture 1

### Validity

Introduction to Sets and Relations.

James Studd

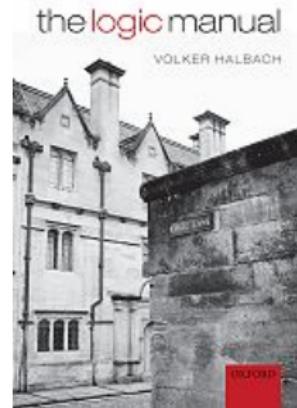
Pure logic is the ruin of the spirit.  
*Antoine de Saint-Exupéry*

# Outline

- (1)** Introductory
- (2)** Validity
- (3)** Course Overview
- (4)** Sets and Relations

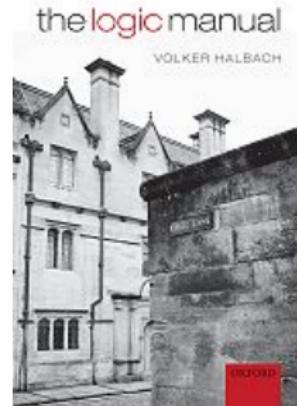
# Resources

- The Logic Manual



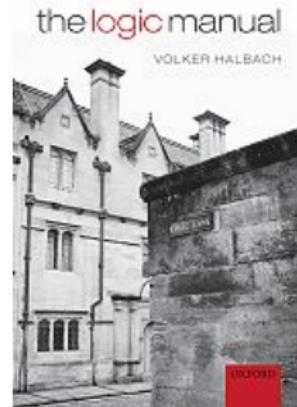
# Resources

- The Logic Manual
- [logicmanual.philosophy.ox.ac.uk](http://logicmanual.philosophy.ox.ac.uk)



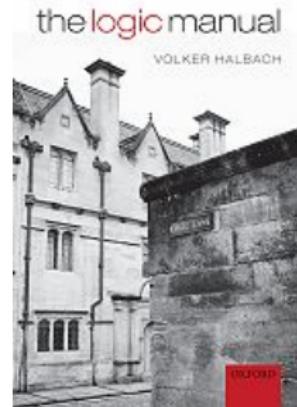
# Resources

- The Logic Manual
- [logicmanual.philosophy.ox.ac.uk](http://logicmanual.philosophy.ox.ac.uk)
  - Exercises booklet
  - Lecture slides
  - Worked examples
  - Past examination papers  
some with solutions



# Resources

- The Logic Manual
- [logicmanual.philosophy.ox.ac.uk](http://logicmanual.philosophy.ox.ac.uk)
  - Exercises booklet
  - Lecture slides
  - Worked examples
  - Past examination papers  
some with solutions
- Mark Sainsbury: *Logical Forms: An Introduction to Philosophical Logic*, Blackwell, second edition, 2001, chs. 1–2.



# Why logic?

# Why logic?

Logic is the scientific study of valid argument.

# Why logic?

Logic is the scientific study of valid argument.

- Philosophy is all about arguments and reasoning.

# Why logic?

Logic is the scientific study of valid argument.

- Philosophy is all about arguments and reasoning.
- Logic allows us to rigorously test validity.

# Why logic?

Logic is the scientific study of valid argument.

- Philosophy is all about arguments and reasoning.
- Logic allows us to rigorously test validity.
- Modern philosophy assumes familiarity with logic.

# Why logic?

Logic is the scientific study of valid argument.

- Philosophy is all about arguments and reasoning.
- Logic allows us to rigorously test validity.
- Modern philosophy assumes familiarity with logic.
- Used in linguistics, mathematics, computer science,...

# Why logic?

Logic is the scientific study of valid argument.

- Philosophy is all about arguments and reasoning.
- Logic allows us to rigorously test validity.
- Modern philosophy assumes familiarity with logic.
- Used in linguistics, mathematics, computer science,...
- Helps us make fine-grained conceptual distinctions.

# Why logic?

Logic is the scientific study of valid argument.

- Philosophy is all about arguments and reasoning.
- Logic allows us to rigorously test validity.
- Modern philosophy assumes familiarity with logic.
- Used in linguistics, mathematics, computer science,...
- Helps us make fine-grained conceptual distinctions.
- Logic is compulsory.

# Validity 1/3

## First approximation.

When an argument is valid, the truth of the premisses **guarantees** the truth of the conclusion.

# Validity 1/3

## First approximation.

When an argument is valid, the truth of the premisses **guarantees** the truth of the conclusion.

10

An argument is valid if it 'can't' be the case that all of the premisses are true and the conclusion is false.

# Validity 1/3

## First approximation.

When an argument is valid, the truth of the premisses **guarantees** the truth of the conclusion.

10

An argument is valid if it 'can't' be the case that all of the premisses are true and the conclusion is false.

- Validity does **not** depend on contingent facts.

# Validity 1/3

## First approximation.

When an argument is valid, the truth of the premisses **guarantees** the truth of the conclusion.

10

An argument is valid if it 'can't' be the case that all of the premisses are true and the conclusion is false.

- Validity does not depend on contingent facts.
- Validity does not depend on laws of nature.

# Validity 1/3

## First approximation.

When an argument is valid, the truth of the premisses **guarantees** the truth of the conclusion.

10

An argument is valid if it 'can't' be the case that all of the premisses are true and the conclusion is false.

- Validity does not depend on contingent facts.
- Validity does not depend on laws of nature.
- Validity does not depend on the meanings of subject-specific expressions.

# Validity 1/3

## First approximation.

When an argument is valid, the truth of the premisses **guarantees** the truth of the conclusion.

10

An argument is valid if it 'can't' be the case that all of the premisses are true and the conclusion is false.

- Validity does not depend on contingent facts.
- Validity does not depend on laws of nature.
- Validity does not depend on the meanings of subject-specific expressions.
- Validity depends purely on the 'form' of the argument.

# Examples

## Argument 1

Zeno is a tortoise.

Therefore, Zeno is toothless.

# Examples

## Argument 1

Not valid

Zeno is a tortoise.

Therefore, Zeno is toothless.

The truth of the premiss does not provide a sufficiently strong guarantee of the truth of the conclusion

# Examples

## Argument 1

Not valid

Zeno is a tortoise.

Therefore, Zeno is toothless.

The truth of the premiss does not provide a sufficiently strong guarantee of the truth of the conclusion

## Argument 2

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

# Examples

## Argument 1

Not valid

Zeno is a tortoise.

Therefore, Zeno is toothless.

The truth of the premiss does not provide a sufficiently strong guarantee of the truth of the conclusion

## Argument 2

Valid

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

# Validity 2/3

## Characterisation (p. 19)

An argument is **logically valid** if and only if:  
there is no interpretation under which:

- (i) the premisses are all true, and
- (ii) the conclusion is false.

# Argument 1 revisited

## Argument 1

Zeno is a tortoise.

Therefore, Zeno is toothless.

# Argument 1 revisited

## Argument 1

Not valid

Zeno is a tortoise.

Therefore, Zeno is toothless.

There is an interpretation under which:

- (i) the premiss is true, and
- (ii) the conclusion is false.

# Argument 1 revisited

## Argument 1

Not valid

Zeno is a tortoise.

Therefore, Zeno is toothless.

## Argument 1a

Boris Johnson is a Conservative.

Therefore, Boris Johnson is a Liberal Democrat.

There is an interpretation under which:

- (i) the premiss is true, and
- (ii) the conclusion is false.

# Argument 1 revisited

## Argument 1

Not valid

Zeno is a tortoise.

Therefore, Zeno is toothless.

## Argument 1a

Not valid

Boris Johnson is a Conservative.

Therefore, Boris Johnson is a Liberal Democrat.

There is an interpretation under which:

- (i) the premiss is true, and
- (ii) the conclusion is false.

# Argument 2 revisited

## Argument 2

Valid

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

# Argument 2 revisited

## Argument 2

Valid

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

## Argument 2a

Boris Johnson is a Conservative.

All Conservatives are Liberal Democrats.

Therefore, Boris Johnson is a Liberal Democrat.

# Argument 2 revisited

## Argument 2

Valid

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

## Argument 2a

Valid

Boris Johnson is a Conservative.

All Conservatives are Liberal Democrats.

Therefore, Boris Johnson is a Liberal Democrat.

# Argument 2 revisited

## Argument 2

Valid

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

## Argument 2a

Valid

Boris Johnson is a Conservative.

All Conservatives are Liberal Democrats.

Therefore, Boris Johnson is a Liberal Democrat.

## Argument 2b

Radon is a noble gas.

All noble gases are chemical elements.

Therefore, Radon is a chemical element.

# Argument 2 revisited

## Argument 2

Valid

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

## Argument 2a

Valid

Boris Johnson is a Conservative.

All Conservatives are Liberal Democrats.

Therefore, Boris Johnson is a Liberal Democrat.

## Argument 2b

Valid

Radon is a noble gas.

All noble gases are chemical elements.

Therefore, Radon is a chemical element.

# Argument 2 revisited

## Argument 2

Valid

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

## Argument 2a

Valid

Boris Johnson is a Conservative.

All Conservatives are Liberal Democrats.

Therefore, Boris Johnson is a Liberal Democrat.

## Argument 2b

Valid

Radon is a noble gas.

All noble gases are chemical elements.

Therefore, Radon is a chemical element.

Note: argument 2a is a valid argument with a false conclusion.

# Validity 3/3.

## Characterisation (p. 19)

An argument is **logically valid** if and only if:  
there is no [uniform] interpretation [of subject-specific  
expressions] under which:

- (i) the premisses are all true, and
- (ii) the conclusion is false.

# Validity 3/3.

## Characterisation (p. 19)

An argument is **logically valid** if and only if:  
there is no [uniform] interpretation [of subject-specific  
expressions] under which:

- (i) the premisses are all true, and
- (ii) the conclusion is false.

- Each occurrence of an expression interpreted in the same way

# Validity 3/3.

## Characterisation (p. 19)

An argument is **logically valid** if and only if:  
there is no [uniform] interpretation [of subject-specific  
expressions] under which:

- (i) the premisses are all true, and
- (ii) the conclusion is false.

- Each occurrence of an expression interpreted in the same way
- Logical expression keep their usual English meanings.

# Subject-specific versus logical expressions

## Examples: logical terms

all, every, some, no.

not, and, or, unless, if, only if, if and only if.

# Subject-specific versus logical expressions

## Examples: logical terms

all, every, some, no.

not, and, or, unless, if, only if, if and only if.

## Examples: subject-specific terms

Zeno, Boris Johnson, France, The North Sea, Radon, soap, bread, GDP, logical positivism, ...

tortoise, toothless, Conservative, nobel gas, philosopher, chemical element, ...

loves, owns, reacts with, voted for, ...

# Argument 2 revisited again

## Argument 2

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

# Argument 2 revisited again

## Argument 2

Valid

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

# Argument 2 revisited again

## Argument 2

Valid

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

## Argument 3

Boris Johnson is a Conservative.

No Conservatives are Liberal Democrats.

Therefore, Boris Johnson is a Liberal Democrat.

# Argument 2 revisited again

## Argument 2

Valid

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

## Argument 3

Not valid

Boris Johnson is a Conservative.

No Conservatives are Liberal Democrats.

Therefore, Boris Johnson is a Liberal Democrat.

# Argument 2 revisited again

## Argument 2

Valid

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

## Argument 3

Not valid

Boris Johnson is a Conservative.

No Conservatives are Liberal Democrats.

Therefore, Boris Johnson is a Liberal Democrat.

## Argument 4

Radon is a noble gas.

All noble gases are chemical elements.

Therefore, air is a chemical element.

# Argument 2 revisited again

## Argument 2

Valid

Zeno is a tortoise.

All tortoises are toothless.

Therefore, Zeno is toothless.

## Argument 3

Not valid

Boris Johnson is a Conservative.

No Conservatives are Liberal Democrats.

Therefore, Boris Johnson is a Liberal Democrat.

## Argument 4

Not valid

Radon is a noble gas.

All noble gases are chemical elements.

Therefore, air is a chemical element.

# Course overview

- 1:** Validity; Introduction to Sets and Relations
- 2:** Syntax and Semantics of Propositional Logic
- 3:** Formalization in Propositional Logic
- 4:** The Syntax of Predicate Logic

- 5:** The Semantics of Predicate Logic
- 6:** Natural Deduction
- 7:** Formalization in Predicate Logic
- 8:** Identity and Definite Descriptions

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

- The objects are called **elements** of the set.

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

- The objects are called **elements** of the set.
- $a \in b$  is short for ‘ $a$  is an element of set  $b$ ’.

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

- The objects are called **elements** of the set.
- $a \in b$  is short for ‘ $a$  is an element of set  $b$ ’.

## Examples

- The set of positive integers less than 4:

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

- The objects are called **elements** of the set.
- $a \in b$  is short for ‘ $a$  is an element of set  $b$ ’.

## Examples

- The set of positive integers less than 4:  
 $\{1, 2, 3\}$

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

- The objects are called **elements** of the set.
- $a \in b$  is short for ‘ $a$  is an element of set  $b$ ’.

## Examples

- The set of positive integers less than 4:  
 $\{1, 2, 3\}$  or  $\{n : n \text{ is an integer between 1 and 3}\}$

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

- The objects are called **elements** of the set.
- $a \in b$  is short for ‘ $a$  is an element of set  $b$ ’.

## Examples

- The set of positive integers less than 4:  
 $\{1, 2, 3\}$  or  $\{n : n \text{ is an integer between 1 and 3}\}$
- The set of positive integers:

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

- The objects are called **elements** of the set.
- $a \in b$  is short for ‘ $a$  is an element of set  $b$ ’.

## Examples

- The set of positive integers less than 4:  
 $\{1, 2, 3\}$  or  $\{n : n \text{ is an integer between 1 and 3}\}$
- The set of positive integers:  
 $\{1, 2, 3, 4, \dots\}$

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

- The objects are called **elements** of the set.
- $a \in b$  is short for ‘ $a$  is an element of set  $b$ ’.

## Examples

- The set of positive integers less than 4:  
 $\{1, 2, 3\}$  or  $\{n : n \text{ is an integer between 1 and 3}\}$
- The set of positive integers:  
 $\{1, 2, 3, 4, \dots\}$  or  $\{n : n > 0\}$

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

- The objects are called **elements** of the set.
- $a \in b$  is short for ‘ $a$  is an element of set  $b$ ’.

## Examples

- The set of positive integers less than 4:  
 $\{1, 2, 3\}$  or  $\{n : n \text{ is an integer between 1 and 3}\}$
- The set of positive integers:  
 $\{1, 2, 3, 4, \dots\}$  or  $\{n : n > 0\}$
- The empty set:

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

- The objects are called **elements** of the set.
- $a \in b$  is short for ‘ $a$  is an element of set  $b$ ’.

## Examples

- The set of positive integers less than 4:  
 $\{1, 2, 3\}$  or  $\{n : n \text{ is an integer between 1 and 3}\}$
- The set of positive integers:  
 $\{1, 2, 3, 4, \dots\}$  or  $\{n : n > 0\}$
- The empty set:  
 $\{ \}$

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

- The objects are called **elements** of the set.
- $a \in b$  is short for ‘ $a$  is an element of set  $b$ ’.

## Examples

- The set of positive integers less than 4:  
 $\{1, 2, 3\}$  or  $\{n : n \text{ is an integer between 1 and 3}\}$
- The set of positive integers:  
 $\{1, 2, 3, 4, \dots\}$  or  $\{n : n > 0\}$
- The empty set:  
 $\{ \}$  or  $\{x : x \text{ is a round square}\}$

# Sets 1/2

## Characterisation

A **set** is a collection of zero or more objects.

- The objects are called **elements** of the set.
- $a \in b$  is short for ‘ $a$  is an element of set  $b$ ’.

## Examples

- The set of positive integers less than 4:  
 $\{1, 2, 3\}$  or  $\{n : n \text{ is an integer between 1 and 3}\}$
- The set of positive integers:  
 $\{1, 2, 3, 4, \dots\}$  or  $\{n : n > 0\}$
- The empty set:  
 $\{ \}$  or  $\{x : x \text{ is a round square}\}$  or  $\emptyset$

# Sets 2/2

## Fact about sets

Sets are identical if and only if they have the same elements.

# Sets 2/2

## Fact about sets

Sets are identical if and only if they have the same elements.

## Example

The following sets are all identical:

- {Lennon, McCartney, Harrison, Ringo}

# Sets 2/2

## Fact about sets

Sets are identical if and only if they have the same elements.

## Example

The following sets are all identical:

- {Lennon, McCartney, Harrison, Ringo}
- {Ringo, Lennon, Harrison, McCartney}

# Sets 2/2

## Fact about sets

Sets are identical if and only if they have the same elements.

## Example

The following sets are all identical:

- {Lennon, McCartney, Harrison, Ringo}
- {Ringo, Lennon, Harrison, McCartney}
- {Ringo, Ringo, Ringo, Lennon, Harrison, McCartney}

# Sets 2/2

## Fact about sets

Sets are identical if and only if they have the same elements.

## Example

The following sets are all identical:

- {Lennon, McCartney, Harrison, Ringo}
- {Ringo, Lennon, Harrison, McCartney}
- {Ringo, Ringo, Ringo, Lennon, Harrison, McCartney}
- $\{x : x \text{ is a Beatle}\}$

# Sets 2/2

## Fact about sets

Sets are identical if and only if they have the same elements.

## Example

The following sets are all identical:

- $\{\text{Lennon, McCartney, Harrison, Ringo}\}$
- $\{\text{Ringo, Lennon, Harrison, McCartney}\}$
- $\{\text{Ringo, Ringo, Ringo, Lennon, Harrison, McCartney}\}$
- $\{x : x \text{ is a Beatle}\}$
- $\{x : x \text{ sang lead vocals on an Abbey Road track}\}$

# Ordered pairs

## Characterisation

An **ordered pair** comprises two components in a given order.

# Ordered pairs

## Characterisation

An **ordered pair** comprises two components in a given order.

- $\langle d, e \rangle$  is the ordered pair whose first component is  $d$  and whose second component is  $e$ , in that order.

# Ordered pairs

## Characterisation

An **ordered pair** comprises two components in a given order.

- $\langle d, e \rangle$  is the ordered pair whose first component is  $d$  and whose second component is  $e$ , in that order.

## Example

$\langle \text{London}, \text{Munich} \rangle \neq \langle \text{Munich}, \text{London} \rangle$

# Ordered pairs

## Characterisation

An **ordered pair** comprises two components in a given order.

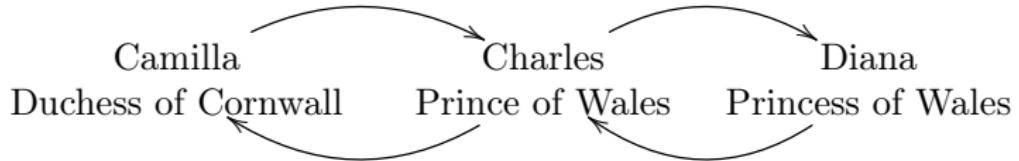
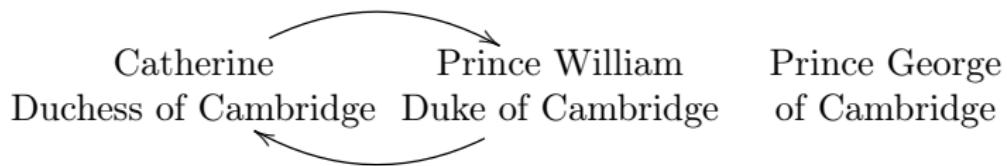
- $\langle d, e \rangle$  is the ordered pair whose first component is  $d$  and whose second component is  $e$ , in that order.

## Example

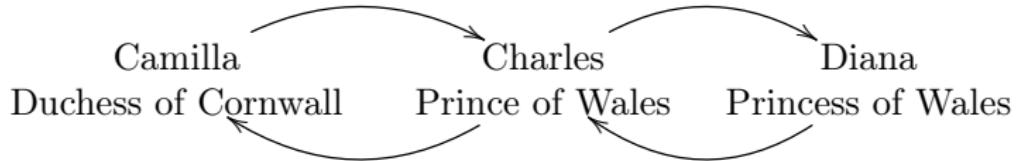
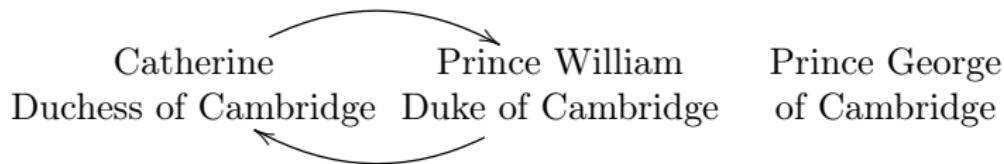
$\langle \text{London}, \text{Munich} \rangle \neq \langle \text{Munich}, \text{London} \rangle$

$\{\text{London}, \text{Munich}\} = \{\text{Munich}, \text{London}\}$

# Relations



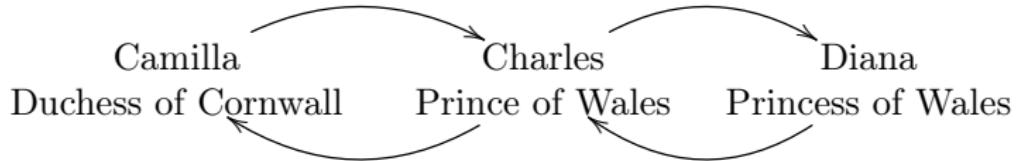
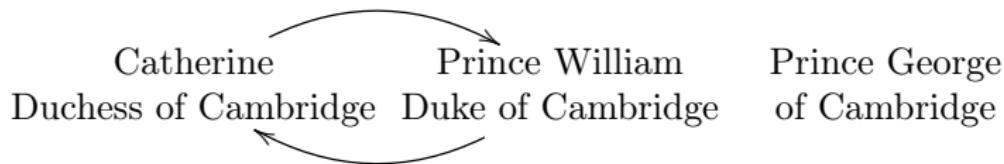
# Relations



The relation of *having married*

$$\{ \text{, , , , , , } \}$$

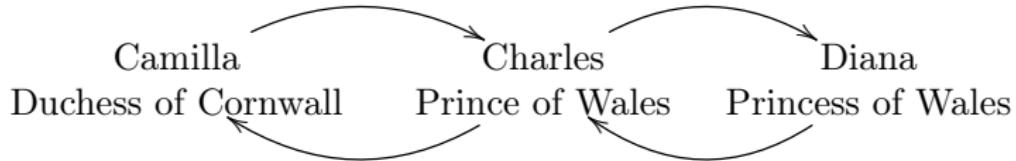
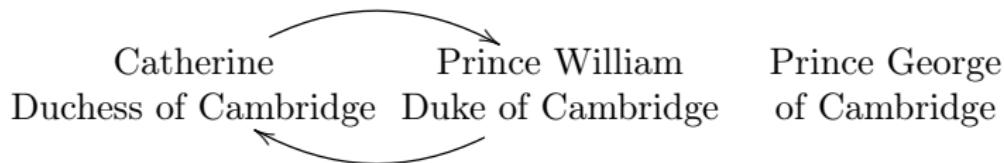
# Relations



The relation of *having married*

$\{\langle \text{Charles}, \text{Diana} \rangle,$  , , ,  
 , , , }  
 , , , }

# Relations

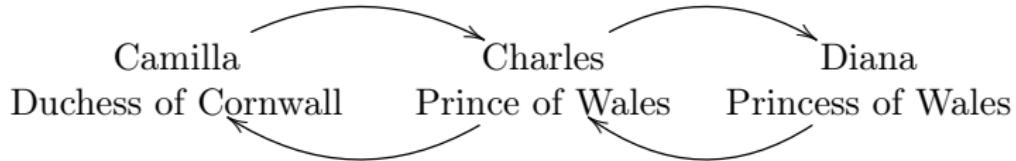
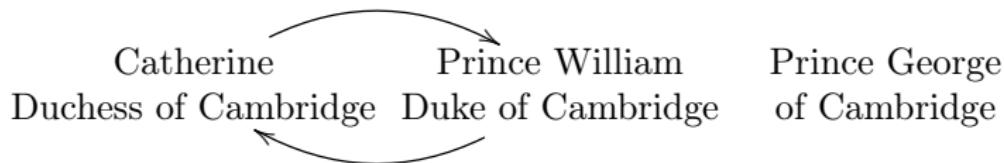


The relation of *having married*

$\{\langle \text{Charles}, \text{Diana} \rangle, \langle \text{Diana}, \text{Charles} \rangle,$

$,$   $,$   $,$   $,$   
 $,$   $,$   $\}$

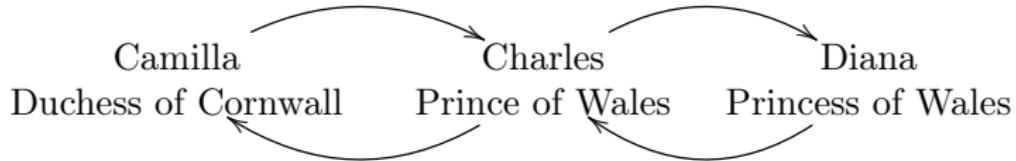
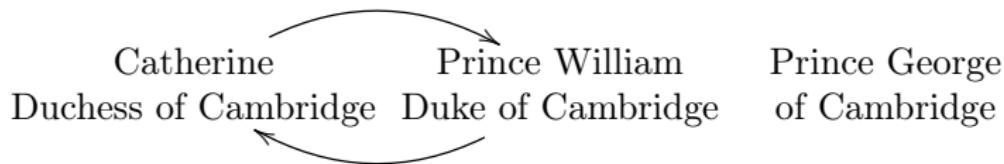
# Relations



The relation of *having married*

$$\{\langle \text{Charles}, \text{Diana} \rangle, \langle \text{Diana}, \text{Charles} \rangle, \langle \text{Charles}, \text{Camilla} \rangle, \langle \text{Catherine}, \text{Prince William} \rangle, \langle \text{Prince William}, \text{Catherine} \rangle, \langle \text{Prince William}, \text{Prince George} \rangle, \langle \text{Prince George}, \text{Prince William} \rangle\}$$

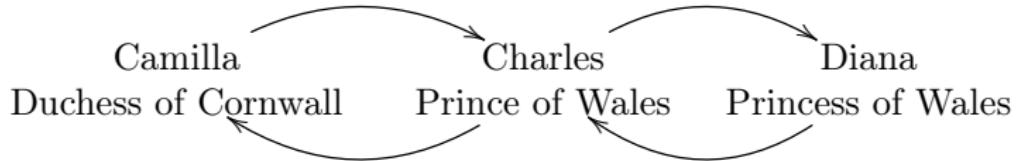
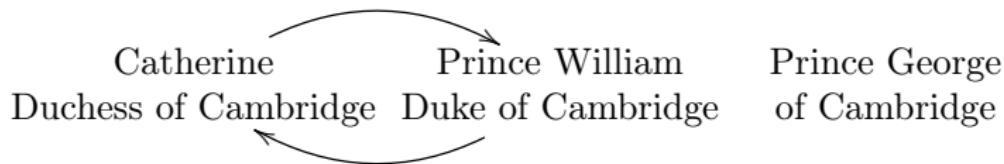
# Relations



The relation of *having married*

$\{\langle \text{Charles}, \text{Diana} \rangle, \langle \text{Diana}, \text{Charles} \rangle,$   
 $\langle \text{Charles}, \text{Camilla} \rangle, \langle \text{Camilla}, \text{Charles} \rangle,$   
 $,$  ,  $\}$

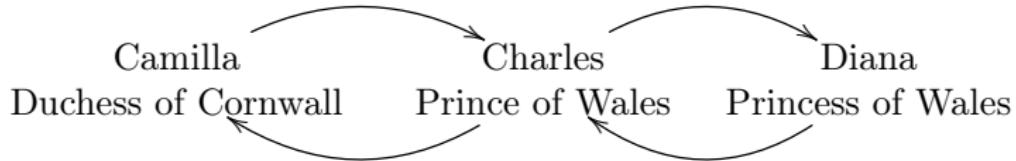
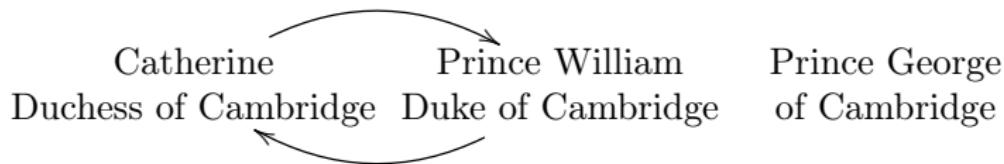
# Relations



The relation of *having married*

$\{\langle \text{Charles}, \text{Diana} \rangle, \langle \text{Diana}, \text{Charles} \rangle,$   
 $\langle \text{Charles}, \text{Camilla} \rangle, \langle \text{Camilla}, \text{Charles} \rangle,$   
 $\langle \text{Kate}, \text{William} \rangle, \quad , \quad \}$

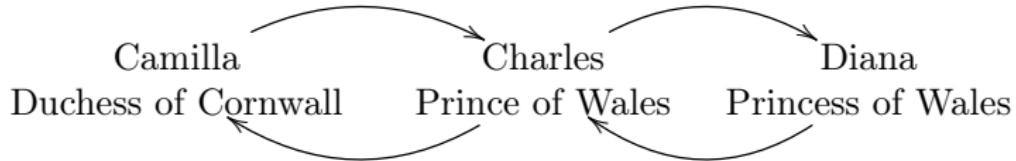
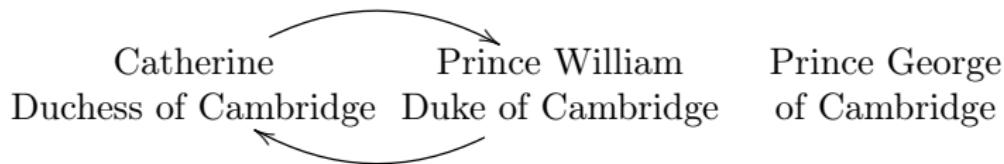
# Relations



The relation of *having married*

$\{\langle \text{Charles}, \text{Diana} \rangle, \langle \text{Diana}, \text{Charles} \rangle,$   
 $\langle \text{Charles}, \text{Camilla} \rangle, \langle \text{Camilla}, \text{Charles} \rangle,$   
 $\langle \text{Kate}, \text{William} \rangle, \langle \text{William}, \text{Kate} \rangle, \quad \}$

# Relations



The relation of *having married*

$\{\langle \text{Charles}, \text{Diana} \rangle, \langle \text{Diana}, \text{Charles} \rangle,$   
 $\langle \text{Charles}, \text{Camilla} \rangle, \langle \text{Camilla}, \text{Charles} \rangle,$   
 $\langle \text{Kate}, \text{William} \rangle, \langle \text{William}, \text{Kate} \rangle, \dots \}$

# Worked example

Write down the following relation as a set of ordered pairs.  
Draw its arrow diagram.

40

The relation of *being countries in GB sharing a border*

# Worked example

Write down the following relation as a set of ordered pairs.  
Draw its arrow diagram.

40

**The relation of *being countries in GB sharing a border***

$$\{\langle \text{England}, \text{Scotland} \rangle, \langle \text{Scotland}, \text{England} \rangle, \\ \langle \text{England}, \text{Wales} \rangle, \langle \text{Wales}, \text{English} \rangle\}$$

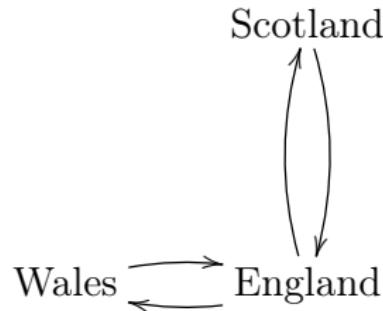
# Worked example

Write down the following relation as a set of ordered pairs.  
Draw its arrow diagram.

40

**The relation of *being countries in GB sharing a border***

$\{\langle\text{England, Scotland}\rangle, \langle\text{Scotland, England}\rangle,$   
 $\langle\text{England, Wales}\rangle, \langle\text{Wales, England}\rangle\}$



# Relations

# Relations

## Definition (p. 8)

A set  $R$  is a **binary relation** if and only if it contains only ordered pairs.

# Relations

## Definition (p. 8)

A set  $R$  is a **binary relation** if and only if it contains only ordered pairs.

Informally:  $\langle d, e \rangle \in R$  indicates that  $d$  stands in  $R$  to  $e$ .

# Relations

## Definition (p. 8)

A set  $R$  is a **binary relation** if and only if it contains only ordered pairs.

Informally:  $\langle d, e \rangle \in R$  indicates that  $d$  stands in  $R$  to  $e$ .

## Example

- The relation of *having married*.
  - $\{\langle \text{Kate, William} \rangle, \langle \text{Charles, Camilla} \rangle, \dots \}$

# Relations

## Definition (p. 8)

A set  $R$  is a **binary relation** if and only if it contains only ordered pairs.

Informally:  $\langle d, e \rangle \in R$  indicates that  $d$  stands in  $R$  to  $e$ .

## Example

- The relation of *having married*.
  - $\{\langle \text{Kate, William} \rangle, \langle \text{Charles, Camilla} \rangle, \dots \}$
  - $\{\langle d, e \rangle : d \text{ married } e\}$ .

# Relations

## Definition (p. 8)

A set  $R$  is a **binary relation** if and only if it contains only ordered pairs.

Informally:  $\langle d, e \rangle \in R$  indicates that  $d$  stands in  $R$  to  $e$ .

## Example

- The relation of *having married*.
  - $\{\langle \text{Kate, William} \rangle, \langle \text{Charles, Camilla} \rangle, \dots \}$
  - $\{\langle d, e \rangle : d \text{ married } e\}$ .
- The empty set:  $\emptyset$

# Properties of relations 1/3

## Definition (p. 9)

A binary relation  $R$  is **reflexive on a set  $S$**  iff:

- for all  $d$  in  $S$ : the pair  $\langle d, d \rangle$  is an element of  $R$ .

# Properties of relations 1/3

## Definition (p. 9)

A binary relation  $R$  is **reflexive on a set  $S$**  iff:

- for all  $d$  in  $S$ : the pair  $\langle d, d \rangle$  is an element of  $R$ .

45

Informally: every member of  $S$  bears  $R$  to itself.

# Properties of relations 1/3

## Definition (p. 9)

A binary relation  $R$  is **reflexive on a set  $S$**  iff:

- for all  $d$  in  $S$ : the pair  $\langle d, d \rangle$  is an element of  $R$ .

45

Informally: every member of  $S$  bears  $R$  to itself.

## Example

- The relation of *being the same height as*

# Properties of relations 1/3

## Definition (p. 9)

A binary relation  $R$  is **reflexive on a set  $S$**  iff:

- for all  $d$  in  $S$ : the pair  $\langle d, d \rangle$  is an element of  $R$ .

45

Informally: every member of  $S$  bears  $R$  to itself.

## Example      Reflexive on the set of human beings

- The relation of *being the same height as*

# Properties of relations 1/3

## Definition (p. 9)

A binary relation  $R$  is **reflexive on a set  $S$**  iff:

- for all  $d$  in  $S$ : the pair  $\langle d, d \rangle$  is an element of  $R$ .

45

Informally: every member of  $S$  bears  $R$  to itself.

## Example      Reflexive on the set of human beings

- The relation of *being the same height as*

## Example

- The relation of *being taller than*

# Properties of relations 1/3

## Definition (p. 9)

A binary relation  $R$  is **reflexive on a set  $S$**  iff:

- for all  $d$  in  $S$ : the pair  $\langle d, d \rangle$  is an element of  $R$ .

45

Informally: every member of  $S$  bears  $R$  to itself.

### Example      Reflexive on the set of human beings

- The relation of *being the same height as*

### Example      Not reflexive on this set

- The relation of *being taller than*

# Properties of relations 1/3

## Definition (p. 9)

A binary relation  $R$  is **reflexive on a set  $S$**  iff:

- for all  $d$  in  $S$ : the pair  $\langle d, d \rangle$  is an element of  $R$ .

45

Informally: every member of  $S$  bears  $R$  to itself.

### Example      Reflexive on the set of human beings

- The relation of *being the same height as*

### Example      Not reflexive on this set

- The relation of *being taller than*

### Example

- $\{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 1, 3 \rangle\}$

# Properties of relations 1/3

## Definition (p. 9)

A binary relation  $R$  is **reflexive on a set  $S$**  iff:

- for all  $d$  in  $S$ : the pair  $\langle d, d \rangle$  is an element of  $R$ .

45

Informally: every member of  $S$  bears  $R$  to itself.

### Example      Reflexive on the set of human beings

- The relation of *being the same height as*

### Example      Not reflexive on this set

- The relation of *being taller than*

### Example      Not reflexive on $\{1, 2, 3\}$

- $\{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 1, 3 \rangle\}$

# Properties of relations 1/3

## Definition (p. 9)

A binary relation  $R$  is **reflexive on a set  $S$**  iff:

- for all  $d$  in  $S$ : the pair  $\langle d, d \rangle$  is an element of  $R$ .

45

Informally: every member of  $S$  bears  $R$  to itself.

### Example      Reflexive on the set of human beings

- The relation of *being the same height as*

### Example      Not reflexive on this set

- The relation of *being taller than*

### Example      Not reflexive on $\{1, 2, 3\}$

- $\{\langle 1, 1 \rangle, \langle 2, 2 \rangle, \langle 1, 3 \rangle\}$

Reflexive on  $\{1, 2\}$

## Reflexivity on $S$

Every point in  $S$  has a “loop”.



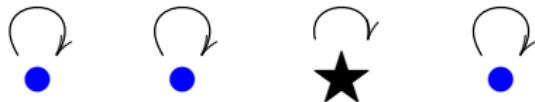
(Reflexive on  $S$ )

Key: Member of  $S$ : 

Non-member of  $S$ : 

## Reflexivity on $S$

Every point in  $S$  has a “loop”.

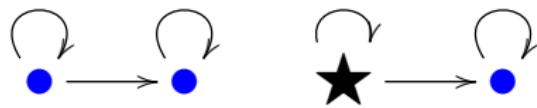


(Reflexive on  $S$ )

Key: Member of  $S$ :   
Non-member of  $S$ : 

## Reflexivity on $S$

Every point in  $S$  has a “loop”.

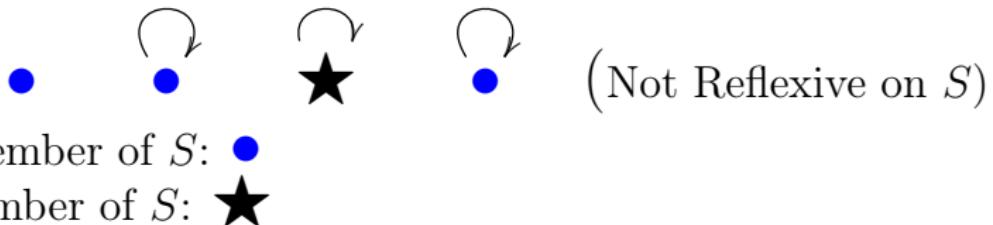


(Reflexive on  $S$ )

Key: Member of  $S$ :   
Non-member of  $S$ : 

## Reflexivity on $S$

Every point in  $S$  has a “loop”.



# Properties of relations 2/3

## Definition (p. 9)

A binary relation  $R$  is **symmetric on set  $S$**  iff:

- for all  $d, e$  in  $S$ : if  $\langle d, e \rangle \in R$  then  $\langle e, d \rangle \in R$ .

# Properties of relations 2/3

## Definition (p. 9)

A binary relation  $R$  is **symmetric on set  $S$**  iff:

- for all  $d, e$  in  $S$ : if  $\langle d, e \rangle \in R$  then  $\langle e, d \rangle \in R$ .

Informally: any member of  $S$  bears  $R$  to a second only if the second bears  $R$  back to the first.

# Properties of relations 2/3

## Definition (p. 9)

A binary relation  $R$  is **symmetric on set  $S$**  iff:

- for all  $d, e$  in  $S$ : if  $\langle d, e \rangle \in R$  then  $\langle e, d \rangle \in R$ .

Informally: any member of  $S$  bears  $R$  to a second only if the second bears  $R$  back to the first.

## Example

- The relation of *being a sibling of*

# Properties of relations 2/3

## Definition (p. 9)

A binary relation  $R$  is **symmetric on set  $S$**  iff:

- for all  $d, e$  in  $S$ : if  $\langle d, e \rangle \in R$  then  $\langle e, d \rangle \in R$ .

Informally: any member of  $S$  bears  $R$  to a second only if the second bears  $R$  back to the first.

## Example Symmetric on the set of human beings

- The relation of *being a sibling of*

# Properties of relations 2/3

## Definition (p. 9)

A binary relation  $R$  is **symmetric on set  $S$**  iff:

- for all  $d, e$  in  $S$ : if  $\langle d, e \rangle \in R$  then  $\langle e, d \rangle \in R$ .

Informally: any member of  $S$  bears  $R$  to a second only if the second bears  $R$  back to the first.

## Example Symmetric on the set of human beings

- The relation of *being a sibling of*

## Example

- The relation of *being a brother of*

# Properties of relations 2/3

## Definition (p. 9)

A binary relation  $R$  is **symmetric on set  $S$**  iff:

- for all  $d, e$  in  $S$ : if  $\langle d, e \rangle \in R$  then  $\langle e, d \rangle \in R$ .

Informally: any member of  $S$  bears  $R$  to a second only if the second bears  $R$  back to the first.

### Example Symmetric on the set of human beings

- The relation of *being a sibling of*

### Example Not symmetric on this set

- The relation of *being a brother of*

## Symmetry on $S$

Every “outward route” between points in  $S$  has a “return route”.



(Symmetric on  $S$ )

## Symmetry on $S$

Every “outward route” between points in  $S$  has a “return route”.



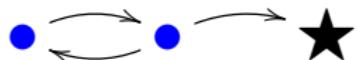
## Symmetry on $S$

Every “outward route” between points in  $S$  has a “return route”.



## Symmetry on $S$

Every “outward route” between points in  $S$  has a “return route”.



(Symmetric on  $S$ )

# Properties of relations 3/3

## Definition

A binary relation  $R$  is **transitive on  $S$**  iff:

- for all  $d, e, f$  in  $S$ :  
if  $\langle d, e \rangle \in R$  and  $\langle e, f \rangle \in R$ , then also  $\langle d, f \rangle \in R$

# Properties of relations 3/3

## Definition

A binary relation  $R$  is **transitive on  $S$**  iff:

- for all  $d, e, f$  in  $S$ :  
if  $\langle d, e \rangle \in R$  and  $\langle e, f \rangle \in R$ , then also  $\langle d, f \rangle \in R$

Informally: if any member of  $S$  bears  $R$  to a second, and the second also bears  $R$  to a third, the first bears  $R$  to the third.

# Properties of relations 3/3

## Definition

A binary relation  $R$  is **transitive on  $S$**  iff:

- for all  $d, e, f$  in  $S$ :  
if  $\langle d, e \rangle \in R$  and  $\langle e, f \rangle \in R$ , then also  $\langle d, f \rangle \in R$

Informally: if any member of  $S$  bears  $R$  to a second, and the second also bears  $R$  to a third, the first bears  $R$  to the third.

## Example

- The relation of *being taller than*

# Properties of relations 3/3

## Definition

A binary relation  $R$  is **transitive on  $S$**  iff:

- for all  $d, e, f$  in  $S$ :  
if  $\langle d, e \rangle \in R$  and  $\langle e, f \rangle \in R$ , then also  $\langle d, f \rangle \in R$

Informally: if any member of  $S$  bears  $R$  to a second, and the second also bears  $R$  to a third, the first bears  $R$  to the third.

## Example Transitive on the set of human beings

- The relation of *being taller than*

# Properties of relations 3/3

## Definition

A binary relation  $R$  is **transitive on  $S$**  iff:

- for all  $d, e, f$  in  $S$ :  
if  $\langle d, e \rangle \in R$  and  $\langle e, f \rangle \in R$ , then also  $\langle d, f \rangle \in R$

Informally: if any member of  $S$  bears  $R$  to a second, and the second also bears  $R$  to a third, the first bears  $R$  to the third.

## Example Transitive on the set of human beings

- The relation of *being taller than*

## Example

- The relation of *not having the same height* ( $\pm 1\text{cm}$ )

# Properties of relations 3/3

## Definition

A binary relation  $R$  is **transitive on  $S$**  iff:

- for all  $d, e, f$  in  $S$ :  
if  $\langle d, e \rangle \in R$  and  $\langle e, f \rangle \in R$ , then also  $\langle d, f \rangle \in R$

Informally: if any member of  $S$  bears  $R$  to a second, and the second also bears  $R$  to a third, the first bears  $R$  to the third.

## Example      Transitive on the set of human beings

- The relation of *being taller than*

## Example      Not transitive on this set

- The relation of *not having the same height* ( $\pm 1\text{cm}$ )

## Transitivity on $S$

Every “double-step” between points in  $S$  has a “one-step shortcut”.

## Transitivity on $S$

Every “double-step” between points in  $S$  has a “one-step shortcut”.



## Transitivity on $S$

Every “double-step” between points in  $S$  has a “one-step shortcut”.



## Transitivity on $S$

Every “double-step” between points in  $S$  has a “one-step shortcut”.



## Transitivity on $S$

Every “double-step” between points in  $S$  has a “one-step shortcut”.



(Transitive on  $S$ )

# Functions

## Definition (p. 14)

A binary relation  $F$  is a **function** iff for all  $d, e, f$ :

- if  $\langle d, e \rangle \in F$  and  $\langle d, f \rangle \in F$  then  $e = f$ .

# Functions

## Definition (p. 14)

A binary relation  $F$  is a **function** iff for all  $d, e, f$ :

- if  $\langle d, e \rangle \in F$  and  $\langle d, f \rangle \in F$  then  $e = f$ .

Informally, everything stands in  $F$  to at most one thing.

# Functions

## Definition (p. 14)

A binary relation  $F$  is a **function** iff for all  $d, e, f$ :

- if  $\langle d, e \rangle \in F$  and  $\langle d, f \rangle \in F$  then  $e = f$ .

Informally, everything stands in  $F$  to at most one thing.

## Example

- The function that squares positive integers.

$$\{\langle 1, 1 \rangle, \langle 2, 4 \rangle, \langle 3, 9 \rangle, \dots\}$$

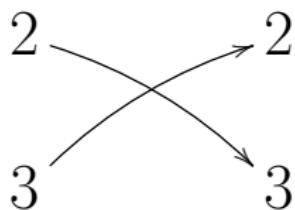
$$\{\langle x, y \rangle : y = x^2, \text{ for } x \text{ a positive integer}\}$$

## $F$ is a function

Everything stands in  $F$  to at most one thing (“many-one” or “one-one”)

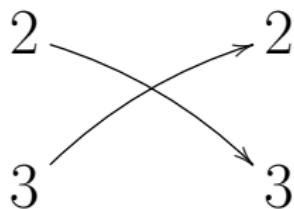
## $F$ is a function

Everything stands in  $F$  to at most one thing (“many-one” or “one-one”)



## $F$ is a function

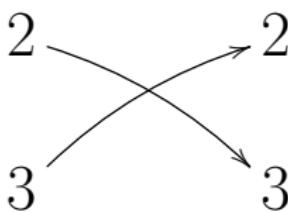
Everything stands in  $F$  to at most one thing (“many-one” or “one-one”)



“one-one”  
function

## $F$ is a function

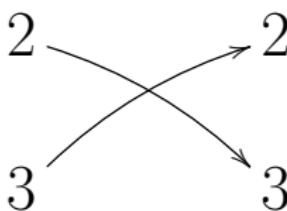
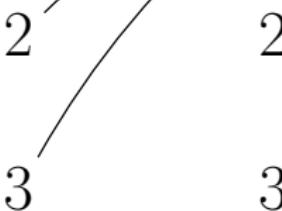
Everything stands in  $F$  to at most one thing (“many-one” or “one-one”)



“one-one”  
function

## $F$ is a function

Everything stands in  $F$  to at most one thing (“many-one” or “one-one”)



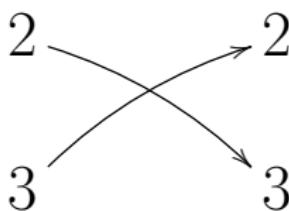
“one-one”  
function



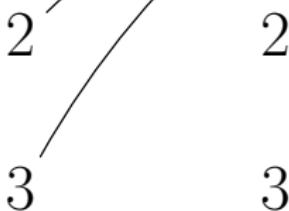
“many-one”  
function

## $F$ is a function

Everything stands in  $F$  to at most one thing (“many-one” or “one-one”)



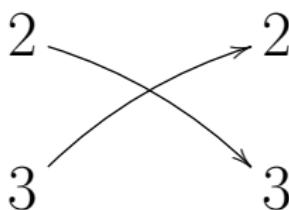
“one-one”  
function



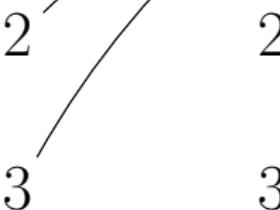
“many-one”  
function

## $F$ is a function

Everything stands in  $F$  to at most one thing (“many-one” or “one-one”)



“one-one”  
function



“many-one”  
function



“one-many”  
not a function

## A “straightforward and elementary” example

- (a) What is a binary relation?
- (b) Consider the relation  $R$  of *sharing exactly one parent*:

$$R = \{\langle d, e \rangle : d \text{ and } e \text{ share exactly one of their parents}\}$$

Determine whether  $R$  is:

- (i) reflexive on the set of human beings
- (ii) symmetric on the set of human beings
- (iii) transitive on the set of human beings

Explain your answers.

## A straightforward and elementary example

- (a) What is a binary relation?

A binary relation is a set of zero or more ordered pairs.

## A straightforward and elementary example

(b)  $R = \{\langle d, e \rangle : d \text{ and } e \text{ share exactly one of their parents}\}$

(i) Is  $R$  reflexive on the set of human beings?

## A straightforward and elementary example

(b)  $R = \{\langle d, e \rangle : d \text{ and } e \text{ share exactly one of their parents}\}$

(i) Is  $R$  reflexive on the set of human beings? No.

## A straightforward and elementary example

(b)  $R = \{\langle d, e \rangle : d \text{ and } e \text{ share exactly one of their parents}\}$

(i) Is  $R$  reflexive on the set of human beings? No.  
I share two parents with myself, not one.

## A straightforward and elementary example

(b)  $R = \{\langle d, e \rangle : d \text{ and } e \text{ share exactly one of their parents}\}$

(i) Is  $R$  reflexive on the set of human beings? No.

I share two parents with myself, not one.

(ii) Is  $R$  symmetric on the set of human beings?

## A straightforward and elementary example

(b)  $R = \{\langle d, e \rangle : d \text{ and } e \text{ share exactly one of their parents}\}$

(i) Is  $R$  reflexive on the set of human beings? No.  
I share two parents with myself, not one.

(ii) Is  $R$  symmetric on the set of human beings? Yes.

## A straightforward and elementary example

(b)  $R = \{\langle d, e \rangle : d \text{ and } e \text{ share exactly one of their parents}\}$

(i) Is  $R$  reflexive on the set of human beings? No.  
I share two parents with myself, not one.

(ii) Is  $R$  symmetric on the set of human beings? Yes.  
If human beings  $d$  and  $e$  share exactly one parent,  
clearly  $e$  and  $d$ —the very same people—share exactly  
one parent too.

## A straightforward and elementary example

(b)  $R = \{\langle d, e \rangle : d \text{ and } e \text{ share exactly one of their parents}\}$

(i) Is  $R$  reflexive on the set of human beings? No.  
I share two parents with myself, not one.

(ii) Is  $R$  symmetric on the set of human beings? Yes.  
If human beings  $d$  and  $e$  share exactly one parent,  
clearly  $e$  and  $d$ —the very same people—share exactly  
one parent too.

(iii) Is  $R$  transitive on the set of human beings?

## A straightforward and elementary example

(b)  $R = \{\langle d, e \rangle : d \text{ and } e \text{ share exactly one of their parents}\}$

(i) Is  $R$  reflexive on the set of human beings? No.  
I share two parents with myself, not one.

(ii) Is  $R$  symmetric on the set of human beings? Yes.  
If human beings  $d$  and  $e$  share exactly one parent,  
clearly  $e$  and  $d$ —the very same people—share exactly  
one parent too.

(iii) Is  $R$  transitive on the set of human beings? No.

## A straightforward and elementary example

(b)  $R = \{\langle d, e \rangle : d \text{ and } e \text{ share exactly one of their parents}\}$

(i) Is  $R$  reflexive on the set of human beings? No.  
I share two parents with myself, not one.

(ii) Is  $R$  symmetric on the set of human beings? Yes.  
If human beings  $d$  and  $e$  share exactly one parent,  
clearly  $e$  and  $d$ —the very same people—share exactly  
one parent too.

(iii) Is  $R$  transitive on the set of human beings? No.  
For example, my maternal half-sister Rachel and I  
share exactly one parent, and me and my paternal  
half-sister Debby share exactly one parent, but Rachel  
and Debby share no parents.

logicmanual.philosophy.ox.ac.uk