INTRODUCTION TO LOGIC

Lecture 2
Syntax and Semantics of
Propositional Logic.

Dr. James Studd

Logic is the beginning of wisdom.
Thomas Aquinas



.
Outline

@ Syntax vs Semantics.
© Syntax of L;.

© Semantics of L.

© Truth-table methods.
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Syntax

Syntax is all about expressions: words and sentences.

Examples of syntactic claims

@ ‘Bertrand Russell’ is a proper noun.
o ‘likes logic’ is a verb phrase.
o ‘Bertrand Russell likes logic’ is a sentence.

@ Combining a proper noun and a verb phrase in this way
makes a sentence.



Semantics

Semantics is all about meanings of expressions.



Syntax vs. Semantics

Semantics

Semantics is all about meanings of expressions.

Examples of semantic claims



Syntax vs. Semantics

Semantics

Semantics is all about meanings of expressions.

Examples of semantic claims

o ‘Bertrand Russell’ refers to a British philosopher.



Syntax vs. Semantics

Semantics

Semantics is all about meanings of expressions.

Examples of semantic claims

o ‘Bertrand Russell’ refers to a British philosopher.

@ ‘Bertrand Russell’ refers to Bertrand Russell.



Syntax vs. Semantics

Semantics

Semantics is all about meanings of expressions.

Examples of semantic claims

o ‘Bertrand Russell’ refers to a British philosopher.
@ ‘Bertrand Russell’ refers to Bertrand Russell.

o ‘likes logic’ expresses a property Russell has.



Syntax vs. Semantics

Semantics

Semantics is all about meanings of expressions.

Examples of semantic claims

o ‘Bertrand Russell’ refers to a British philosopher.
o ‘Bertrand Russell’ refers to Bertrand Russell.
o ‘likes logic’ expresses a property Russell has.

o ‘Bertrand Russell likes logic’ is true.
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Use vs Mention

Note our use of quotes to talk about expressions.

‘Bertrand Russell’ refers to Bertrand Russell.

@ The first occurrence of ‘Bertrand Russell” is an example
of mention.

@ This occurrence (with quotes) refers to an expression.

Use

@ The second occurrence of ‘Bertrand Russell’ is an
example of use.

@ This occurrence (without quotes) refers to a man.
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Syntax: English vs. L.
English has many different sorts of expression.

Some expressions of English

(1) Sentences: ‘Bertrand Russell likes logic’, ‘Philosophers like
conceptual analysis’, etc..

(2) Connectives: ‘it is not the case that’, ‘and’, etc..
(3) Noun phrases: ‘Bertrand Russell’, ‘Philosophers’, etc..
(4) Verb phrases: ‘likes logic’, ‘like conceptual analysis’, etc..

(5) Also: nouns, verbs, pronouns, etc., etc., etc..

L, has just two sorts of basic expression.

Some basic expressions of £,
(1) Sentence letters: e.g. ‘P, ‘Q’.

(2) Connectives: e.g. ‘=', ‘A’
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2.2 The Syntax of the Language of Propositional

Combining sentences and connectives makes new sentences.

Some complex sentences

@ ‘It is not the case that’ and ‘Bertrand Russell likes logic’ make:
‘It is not the case that Bertrand Russell likes logic’.

@ ‘=" and ‘P’ make: ‘—P’.

@ ‘Bertrand Russell likes logic’ and ‘and’ and ‘Philosophers like
conceptual analysis’ make:
‘Bertrand Russell likes logic and philosophers like conceptual
analysis’.

@ ‘P’ ‘A’ and ‘Q" make: (P AQ)".

Logic convention: no quotes around L-expressions.

@ P, A and @ make: (PAQ).
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Here’s the official definition of £-sentence.

(i) All sentence letters are sentences of L;:
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The syntax of £

Here’s the official definition of £-sentence.

(i) All sentence letters are sentences of L;:
(] P,Q,R,P]_,Q]_’R]_,P2,Q27R2,P3,...
(ii) If ¢ and 1 are sentences of £y, then so are:
° ¢
° (pAY)
° (#V¥)
° (¢ =)
° (¢ 1)

(iii) Nothing else is a sentence of L.

Greek letters: ¢ (‘PHI") and ¢ (‘PSI’): not part of £;.
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The following is a sentence of Ly:

~((PAQ) = (PV -Rgs)) & ~((PV R)V R))

Definition of £;-sentences (repeated from previous page)

(i) All sentence letters are sentences of L.

(ii) If ¢ and 1 are sentences of Ly, then =@, (¢ A ),
(¢ V), (6 — ) and (¢ <> 1)) are sentences of L;.

(iii) Nothing else is a sentence of L.
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(iii) Nothing else is a sentence of L.
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Object vs. Metalanguage

I mentioned that ¢ and v are not part of L.

@ —P is a Li-sentence.

@ —¢ describes many Li-sentences (but is not one itself).
eg. P, —=(QVR), —(P+ (QVR)),

¢ and 1) are part of the metalanguage, not the object one.

Object language

The object language is the one we’re theorising about.

@ The object language is L.

Metalanguage

The metalanguage is the one we’re theorising in.

@ The metalanguage is (augmented) English.

¢ and v are used as variables in the metalanguage:
in order to generalise about sentences of the object language.
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Example in arithmetic
@ 4+ 5 x 3 does not abbreviate (4 4+ 5) x 3.
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2.4 The Semantics of Propositional Logic

Semantics

Recall the characterisation of validity from week 1.

Characterisation
An argument is logically valid if and only if there is no
interpretation of subject-specific expressions under which:

(i) the premisses are all true, and

(ii) the conclusion is false.

We’ll adapt this characterisation to L;.
@ Logical expressions: =, A\, V, — and <.
@ Subject specific expressions: P,Q, R, ...

e Interpretation: L£;-structure.
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L-structures

We interpret sentence letters by assigning them truth-values:

either T for True or F for False.

Definition

An L;-structure is an assignment of exactly one
truth-value (T or F) to every sentence letter of £;.

Examples

We can think of an £;-structure as an infinite list that
provides a value T or F for every sentence letter.

P Q R P Q1 R P Q: R

B: ¥ F F ¥ ¥ F F F F

We use A, B, etc. to stand for £;-structures.
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Truth-values of complex sentences 1/3

L1-structures only directly specify truth-values for P, Q, R, ...
@ The logical connectives have fixed meanings.
@ These determine the truth-values of complex sentences.
e Notation: |¢|4 is the truth-value of ¢ under A.

Truth-conditions for —

The meaning of — is summarised in its truth table.

¢ || ¢
T F
F| T

In words: |=¢|4 = T if and only if |p|4 = F.
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¢
|| 4 is the truth-value of ¢ under A.
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Compute the following truth-values.

Let the structure A be partially specified as follows.

P QQ R P Qi Ri P Q2 R
T ¥ F F T F T T F

Compute:
|[Pla=T Qla=F |Rila=F
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Truth-conditions for A and Vv

The meanings of A and V are given by the truth tables:

(¢ A1) (¢ V)

g e
S| BN
o
o g Ele
SIS | BN
SESEEES

|(¢p A)|a =T if and only if |¢p|4 = T and |¢|4 = T.
(¢ V)|a=Tif and only if |¢|4 =T or 19| 4 = T (or both).
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Truth-conditions for — and «

The meanings of — and <> are given by the truth tables:

o v | (&) 64| (60
T|T T T|T T
T F F T|F F
F|T T F|T F
F|F T F|F T

(¢ = ¥)|4 =T if and only if |p|4 =F or |[¢p|4 =T.
(¢ <> ¥)|a =T if and only if [¢|a = [¢]a.
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PlQI-(P=2Q) = (PAQ)
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TIF|ITTFFETFF
FIT\/FFTTTFFT
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The main column (underlined) gives the truth-value of the
whole sentence.
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Let I be a set of sentences of £ and ¢ a sentence of L;.

Definition

The argument with all sentences in I' as premisses and ¢ as
conclusion is valid if and only if there is no £;-structure
under which:

(i) all sentences in I' are true; and
(ii) ¢ is false.

Notation: when this argument is valid we write [' F ¢.

{P — —-Q,Q} &= —~P means that the argument whose premises
are P — —(Q and @, and whose conclusion is =P is valid.
Also written: P — —-Q,Q = —P
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A sentence ¢ of £; is logically true (a tautology) iff:

@ ¢ is true under all £;-structures.

e.g. PV —P,and P — P are tautologies.

Truth tables of tautologies
Every row in the main column is a T.
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A sentence ¢ of L; is a contradiction iff:

@ ¢ is not true under any L;-structure.

e.g. PA—-P,and =(P — P) are contradictions.

Truth tables of contradictions
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2.4 The Semantics of Propositional Logic
Definition

Sentences ¢ and ¢ are logically equivalent iff:

@ ¢ and v are true in exactly the same Li-structures.

@ P and ——P are logically equivalent.
@ PAQ and ~(—P V —Q) are logically equivalent.

Truth tables of logical equivalents

The truth-values in the main columns agree.

| QPAQ|~-(-PV-Q)
TTT|TFTFFT

TFF FTTTF
FET TFTF T

P
T
T
F
F FFF TFTTF

RN
I |
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e Write out the truth table for (P — (-Q A R)) V P.
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P Q R||(P>(-QAR)V
T T T| TFFTF T TT
T T F TFFTF F TT
9P T 9P ||| 9P 9F 9F PP 9P Iuur
T F F TFTFF F TT
F T T||ETFTE T TF
F T F||FTFTFFTF
EE NS R E R e i
F F F||FTTFFFTF
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F|F F F T



2.4 The Semantics of Propositional Logic

Worked example 4 (cont.)
Show that the sentence (P — (-Q A R)) V P is a tautology.

Method 2: Backwards truth table.
@ Put an F in the main column.

@ Work backwards to show this leads to a contradiction.

PIQ|R||(P = (-QAR)V P
?

F, F I,
oY | (@A) | (0Ve) | (9—=) |
o || "o T|T| T T T
T F T F| F T F
FI{ T F|T| F T T
F|F]| F F T



2.4 The Semantics of Propositional Logic

Worked example 5

Show that P <> =Q F =(P < Q)



Worked example 5

Show that P <> =Q F =(P < Q)

Method 1: Full truth table

@ Write out the full truth table.

@ Check there’s no row in which the main column of the
premiss is T and the main column of the conclusion is F.



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)

Show that P +» =Q E —=(P < Q)



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)

Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)

Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|Po-Q|~(PoQ




2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|Po-Q|~(PoQ

6| | (60w
6| —¢ T[T T
T F T|F F
Fi{ T F|T F

F|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|Po-Q|~(PcQ
'

6| | (60w
6| —¢ T[T T
T F T|F F
Fi{ T F|T F

F|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|Po-Q|-(P oQ
T

6| | (60w
6| —¢ T[T T
T F T|F F
Fi{ T F|T F

F|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|Po-Q|-(P cQ
T

6| | (60w
6| —¢ T[T T
T F T|F F
Fi{ T F|T F

F|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|Po-Q|-(P cQ

6| | (60w
6| —¢ T[T T
T F T|F F
Fi{ T F|T F

F|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|Po-Q|-(P cQ

AR RCREED)
6| —¢ T[T T
T F T|F F
Fi{ T F|T F

F|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|Po-Q|~(P cQ

T F T,

T F Ty

¢ v | (¢ev)

o || o T[T T
T F T|F F
F T FI|T F
FI|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|Po-Q|~(P cQ

T F Ty Ty

T F Ty

¢ v | (¢ev)

o || o T[T T
T F T|F F
F T FI|T F
FI|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|Po-Q|~(P cQ

T FTy, T Ts
T F Ty
¢ v | (¢ev)
o || o T[T T
T F T|F F
F T FI|T F
FI|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

P\QHPHﬁQHﬂ P < Q)

FTy, T Ts
FF, Ty
¢ | V| (pe)
6 || ¢ T[T T
T F T|F F
F| T F|T F
F|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

P\QHPHﬁQHﬂ P < Q)

FTy, T Ts

FFy, Ty Fs
¢ | V| (pe)
6 || ¢ T[T T
T F T|F F
F| T F|T F
F|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

P\QHPHﬁQHﬂ P < Q)

T, T FTy, T Ts
FFy, Ty Fs
¢ | V| (¢
6 || ¢ T[T T
T F T|F F
F| T F|T F
F|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|P o - Q=P «Q
Ty T Ts F Ty Ty Ty
T

FFy, Ty Fs

¢ | V| (¢
6 || ¢ T[T T
T F T|F F
F| T F|T F
F|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|PoQ|~(P cQ

T, TTs ?||F Ty T, Ts
T FFy, Ty Fs
¢ v | (¢
o || o T[T T
T F T|F F
F T FI|T F
FI|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|PoQ|~(P cQ

T4TT5. FTy, T Ts
FFy, Ty Fs
¢ v | (¢
o || o T[T T
T F T|F F
F T FI|T F
FI|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|PoQ|~(P cQ

T, TTs ?||F Ty T, Ts
F, T Fjy FFy, Ty Fs
¢ v | (¢
o || o T[T T
T F T|F F
F T FI|T F
FI|F T



2.4 The Semantics of Propositional Logic

Worked example 5 (cont.)
Show that P +» =Q E —=(P < Q)

Method 2: Backwards truth table

@ Put a T in the main column of the premiss and an F in
the main column of the conclusion.

@ Work backwards to obtain a contradiction. X

PIQ|PoQ|~(P cQ

T, TTs ?||F Ty T, Ts
F, TFy ?|FFy T, Fs
¢ v | (¢
o || o T[T T
T F T|F F
F T FI|T F
FI|F T
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