127: Mathematical methods in philosophical logic HT20. Week 2.

b. Induction (LfP 50-3)

b.i. The principle of mathematical induction

The principle of mathematical induction is a property of natural numbers.

b.i.1. Natural numbers

The natural numbers are the non-negative integers: 0,1,2,3,.... We write N for the set
of natural numbers—i.e.:

N=1{0,1,2,3,...}

We’'ll reserve the variables m and n for natural numbers.

b.i.2. Weak and Strong induction and the Least Number Principle.

There are three common ways to formulate the principle of induction, and variants of it.

The ‘weak’ principle of induction (Ind).
If (i) F(0) and (ii) for each n € N: F(n) implies F'(n + 1), then F'(n) for each n e N
(F(0) AVn(F(n) — F(n+1))) - VYnF(n)

The ‘strong’ principle of induction (S-Ind).
If, for each n € N, F(m) for all m < n implies F'(n), then F'(n) for all n e N
Vn((Ym < n)F(m) — F(n)) — YnF(n)

The least number principle (LNP).

If M is a non-empty set of natural numbers, M has a least element.

Remarks.

e Ind is included as one of the axioms in standard axiomatizations of the canonical
theory of arithmetic—Peano arithmetic (PA).

e This serves to distinguish N, from e.g. the set of all integers, non-negative and
negative,
Z=A{..,-2-1,01,2,..}

e.g. {—1,—2,—3,...} is a subset of Z with no least element.
e Ind, S-Ind, and LNP are provably equivalent (given the other axioms of PA)
e We shall help ourselves to all three in informal proofs—usually S-Ind.

e Consequently, the background theory where we ‘do metatheory’ is stronger than
classical logic—also containing some classical mathematics.

Vil



127: Mathematical methods in philosophical logic HT20. Week 2.

b.ii. Induction in arithmetic

We’ll usually think of induction as a proof technique.

b.ii.1. Proof by induction on n

Proof by induction on n. One standard way to show that every n € N is such that
F(n) is by induction on n:

e Base case. Prove F'(0).

e Induction hypothesis. Assume F'(n)

e [nduction step. Prove F(n + 1) (given the induction hypothesis)

Remark. Once you’ve completed the induction step, you’ve completed the proof. But
sometimes you may wish to flag this with something like “Consequently F'(n) holds for
every n € N, by induction”.

b.ii.2. Example: summing series

Worked Example. Show that for any n € N:

1)(2 1
02+12+22+---+nQ=n<nJr é(nJr )

b.iii. Induction in logic

Induction in logic is often strong induction ‘on complexity of formulas’.

b.iii.1. Complexity

One standard way to measure the complexity of a formula is simply to count how many
connectives it contains:

Definition of complexity. Let the complexity of a wif ¢ be the number of connectives
in p—we’ll sometimes write this as C[¢].

Remark. This is a complexity measure for PL, and other propositional languages. When
we come to predicate logic, we’ll count quantifiers as well as connectives.

viil



127: Mathematical methods in philosophical logic HT20. Week 2.

Worked Example. Compute: (i) C[P]; (ii) C[~(P A Q)].

b.iii.2. Proof by induction on complexity of ¢

Proof by induction on the complexity of ¢. One standard way to show that every
formula ¢ is such that G(¢) is to reason as follows.

e Base case. Show G(«) holds for any atomic formula a.
e Let ¢ be an arbitrary formula.
e [nduction hypothesis. Assume G(1)) holds for all ) with complexity less than ¢.

e Induction step. Prove G(¢) (given the induction hypothesis).

Remark. This is an application of S-Ind on the following property of natural numbers:

F(n) := G(¢) holds for all formulas ¢ with C[¢] < n.

b.iii.3. Example: syntactic properties

Worked Example. Show that every PL-wff has the same number of left brackets as
right brackets.

Remarks.
e For PL, the induction step often splits into cases: (i) ¢ = ~, (i) ¢ = (Y1 — Vo).

e Applying the induction hypothesis relies on the fact that C[v], C[¢1], Clws] < C[o].

b.iii.4. Example: semantic properties

Worked Example. Let .#, be the trivalent interpretation that assigns every sentence
letter #. Show that KV, (¢) = # for each wif ¢.

Remark.

e The induction step in the three-valued setting typically calls for four cases:

(i) ¢ = ~1, (i) ¢ = (1 = ¢o), (ili) ¢ = (Y1 A ¢2), (iv) & = (Y1 v 1ha).

1X



127: Mathematical methods in philosophical logic HT20. Week 2.

c. Expressive Adequacy in PL (LfP 3.1)

c.i. Symbolizing truth functions

We often think of the truth tables as somehow ‘giving the meaning’ of a connective. Truth
functions and the notion of symbolizing provide a way to make this precise.

c.i.1. Truth functions

Definition of truth function. An (n-place) truth function is a function that maps
each n-tuple of truth values to a truth value.

Notation. We use lowercase t (and ¢y, t’ etc.) to stand for truth values—since we’re working
with PL, we only have two truth values, 1 or 0.

FExamples.
N:1—0 C:{1,1)—1
0—1 (1,0)— 0
0,1)—1
0,0)—1

Remark. Each n-ary truth function is uniquely determined by the corresponding n + 1-
column truth-table, and vice versa.

c.i.2. Symbolizing

Definition of symbolizing (LfP 68). A wif ¢(FPy, ..., P,) symbolizes an n-place truth
function f iff ¢(Py, ..., P,) contains the sentence letters Py, ..., P,, and no others, and
for each PL-interpretation .#:

Vo) = f(I (), ..., I(Fn))

Remark. 1t’s helpful to write the wif here as ¢(Pi, ..., P,) as a reminder that it contains
precisely these sentence letters.

FExamples.

e ~ P, symbolizes N e P, — P, symbolizes C'

Remark. When ¢(Py, ..., P,) symbolizes f, ¢(Py,..., P,) and f have the same truth table.



127: Mathematical methods in philosophical logic HT20. Week 2.

c.ii. DNF Theorem

Question. Which truth functions can we symbolize in PL?

To start with take ~, A, and v as primitive.

DNF Theorem. FEvery truth function is symbolized by some wff or other containing
only ~, A and v —in fact, by a sentence in Disjunctive Normal Form (DNF).

Definition of DNF. A literal is a sentence letter or its negation. A sentence ¢ is in
DNF if it is a disjunction or one or more conjunctions of one or more literals.

Worked Example. Find a DNF-sentence that symbolizes C'.

Proof of DNF theorem. Let an n-ary truth-function f be given.
Clearly, there are only finitely many n-tuples of truth-values s.t. f(ty,...,t,) = 1.}

Case 1. There are 0 such n-tuples. Set 6 = (P, A ~Py) v ... Vv (P, A ~P,).
Clearly this symbolizes the truth-function that maps each n-tuple to 0 and is in DNF.

Case 2. There are 1 or more such n-tuples.

Enumerate the n-tuples that are mapped to 1: (t1,... t1y .. @k ...tk

Define literals 6} as follows (i = 1,...k,j=1,...n):

g — P if t} = 1

! ~P;ifti =0

Note that, by construction, Vi (6?) = 1 iff V,(P;) =t} (under any .#). (*)

Define a DNF-sentence as follows:

=0 A ... A0 v ...V (08 A AGE).

Remains to prove: § symbolizes f: V,(d) = 1 iff f(S(P),...,.#(P,)) =1 for each .¥.

Vo(0)=1iff Vy(0i A ... A0) =1forsomei=1,... .k
iff Vs (0)) =1;...;Vy(0)) =1 for somei=1,...,k
iff #(P)=t;...;9(P,) =t forsomei=1,...,k (by (%))
iff (I (P),...,7(P,)y={t,....t.) forsomei=1,....k
iff f(A(P),...,7(P,))=f(t,. ., t)=1 O

L After all, for each n, there are only 2" n-tuples of truth values.

x1



127: Mathematical methods in philosophical logic HT20. Week 2.

c.iii. Expressive Adequacy

Definition of adequacy (LfP 69). A set of connectives S is (expressively) adequate
iff every truth function is symbolized by a wff containing only connectives in S.

c.iii.1. Demonstrating adequacy

The usual strategy to show S is adequate is to show its members can simulate ~, A and
v, and then appeal to DNF.

Worked Example. Show {~, —} is adequate.

c.iii.2. Demonstrating inadequacy

The usual strategy to show S is inadequate is to show:

(i) all the truth functions that can be symbolized with sentences built from S-connectives
have a certain property F'.

(ii) not all truth functions have the property F'.

Worked Example. {n,v,—, <} is not adequate.

xii



