

## C. Modal Propositional Logic (MPL)

Let's return to a bivalent setting. In this section, we'll take it for granted that PL gets the semantics and logic of  $\sim$  and  $\rightarrow$  correct, and consider an extension of PL.

### C.I. Why extend PL: the case from non-truth-functionality.

#### C.I.1. Extensionality in PL

One notable feature of PL—shared too by the three-valued systems we considered, except for SV—is that it's truth-functional.

**Truth-functionality of PL** The truth-value of a complex wff  $\phi$  is a function of the truth-values of its immediate subformulas.

#### C.I.2. Non-truth-functional connectives.

But the analogous property fails for some English connectives:

| $P$ | It could be the case that $P$ |
|-----|-------------------------------|
| 1   | 1                             |
| 0   | ?                             |

| $P$ | Tim knows that $P$ |
|-----|--------------------|
| 1   | ?                  |
| 0   | 0                  |

Even if we think that PL gives a correct account of truth-functional connectives, this gives us a reason to investigate extensions of PL that deal with non-truth-functional connectives:

- We add a new unary non-truth-functional connective  $\Box$  (“box”) to our language.

## C.II. Syntax (LfP 2.1)

Syntactically,  $\square$  behaves just like  $\sim$ .

### C.II.1. Primitive symbols

**Primitive Vocabulary for MPL** (LfP 25).

- Connectives:  $\rightarrow$ ,  $\sim$ ,  $\square$
- Sentence letters:  $P, Q, R, P_1, Q_1, R_1, P_2, \dots$
- Parentheses:  $(, )$

### C.II.2. Well-formed formulas (wffs)

**Definition of MPL-wff** (LfP 26).

1. Every sentence letter  $\alpha$  is a MPL-wff.
2. If  $\phi$  and  $\psi$  are MPL-wffs, then  $(\phi \rightarrow \psi)$ ,  $\sim\phi$  and  $\square\phi$  are also MPL-wffs.
3. Only strings that can be shown to be MPL-wffs using (i) and (ii) are MPL-wffs.

*Examples.* The following are MPL-wffs:  $\sim P$ ,  $\square\sim P$ ,  $\square(\square\sim P \vee R)$ .

### C.II.3. Unofficial connectives

We may simulate  $\diamond$  (“diamond”) much as we simulate  $\wedge$  and  $\vee$  in PL:

- $\diamond\phi$  abbreviates  $\sim\Box\sim\phi$

*Remark.* The string of two symbols,  $\diamond P$ , is not an official MPL-wff. Instead it’s short for a string of four symbols,  $\sim\Box\sim P$ , and it’s the four-symbol string that is a MPL-sentence.

### C.III. Simplified Semantics (SMPL)

To motivate the semantics for MPL, start with a simplified version. Approximate idea:

**SMPL truth-conditions for  $\square$ .**  $\square\phi$  is true at  $w$  iff  $\phi$  is true in all possible worlds.

#### C.III.1. SMPL-models (not in LfP)

**Definition of SMPL-model.** A simplified MPL- (henceforth, SMPL-) model is a pair:  $\langle \mathcal{W}, \mathcal{I} \rangle$  where:

- $\mathcal{W}$  is a non-empty set (“the set of possible worlds”)
- $\mathcal{I}$  is a two-place function that assigns each sentence-letter–world pair a truth value, 1 or 0 (“interpretation function”)

*Remark.* Not much metaphysical baggage:  $\mathcal{W}$  can be *any* non-empty set.

#### C.III.2. SMPL-valuation (not in LfP)

Given an SMPL-model  $\mathcal{M} = \langle \mathcal{W}, \mathcal{I} \rangle$ , the *valuation for  $\mathcal{M}$* ,  $V_{\mathcal{M}}$ , is the unique two place function that assigns 0 or 1 to each MPL-wff, for each  $w \in \mathcal{W}$ , meeting the following four conditions.

- $V_{\mathcal{M}}(\alpha, w) = \mathcal{I}(\alpha, w)$ , for each sentence letter  $\alpha$
- $V_{\mathcal{M}}(\phi \rightarrow \psi, w) = 1$  iff  $V_{\mathcal{M}}(\phi, w) = 0$  or  $V_{\mathcal{M}}(\psi, w) = 1$
- $V_{\mathcal{M}}(\sim\phi, w) = 1$  iff  $V_{\mathcal{M}}(\phi, w) = 0$
- $V_{\mathcal{M}}(\square\phi, w) = 1$  iff  $V_{\mathcal{M}}(\phi, v) = 1$  for all  $v \in \mathcal{W}$

*Remarks.*

- We may informally read  $V_{\mathcal{M}}(\phi, w) = 1$  as ‘ $\phi$  is true in  $w$  (relative to  $\mathcal{M}$ )’
- $V_{\mathcal{M}}(\Diamond\phi, w) = 1$  iff  $V_{\mathcal{M}}(\phi, v) = 1$  for some  $v \in \mathcal{W}$

#### C.III.3. Comparison with PL

|                 | Meaning in <i>PL</i>                            | Meaning in <i>MPL</i>                                                                 |
|-----------------|-------------------------------------------------|---------------------------------------------------------------------------------------|
| Atomic $\alpha$ | extension (i.e. truth-value)                    | extension at $w$ , for each $w \in \mathcal{W}$ (‘intension’)                         |
| $\sim\phi$      | extension,<br>determined by extension of $\phi$ | extension at $w$ , for each $w \in W$ ,<br>determined by extension of $\phi$ at $w$ . |
| $\square\phi$   | n/a                                             | extension at $w$ , for each $w \in W$ de-<br>termined by intension of $\phi$ .        |

### C.III.4. SMPL-validity (not in LfP)

**Definition of SMPL-validity.** Given an MPL-wff  $\phi$ :

- $\phi$  is valid in an SMPL-model  $\mathcal{M} = \langle \mathcal{W}, \mathcal{I} \rangle$  iff  $V_{\mathcal{M}}(\phi, w) = 1$  for every  $w \in \mathcal{W}$
- $\phi$  is SMPL-valid if  $\phi$  is valid in every SMPL-model.

*Remarks.*

- In other words,  $\phi$  is SMPL-valid if true at every world of every SMPL-model.
- When this is so, we write  $\models_{\text{SMPL}} \phi$ .

## C.IV. Metaphysical, Temporal, Epistemic and Deontic modality

### C.IV.1. Some ways to understand $\Box$ and $\Diamond$

The semantic machinery we develop in this section may be applied to give a systematic account of a wide range of intensional connectives.

| Modality     | $\Box\phi$ [symbol and gloss]                                                                             | $\Diamond\phi$ [symbol and gloss]                                                      | Member of $\mathcal{W}$ represent                                      |
|--------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| Metaphysical | $\Box\phi$ $\phi$ is necessary                                                                            | $\Diamond\phi$ $\phi$ is possible                                                      | metaphysically possible worlds, ways the world could be                |
| Temporal     | $H\phi$ $\phi$ has always been (at all past times)<br>$G\phi$ $\phi$ will always be (at all future times) | $P\phi$ $\phi$ was (at some past time)<br>$F\phi$ $\phi$ will be (at some future time) | times                                                                  |
| Epistemic    | $K\phi$ $S$ knows that $\phi$ , $\phi$ must be (given what $S$ knows)                                     | $\sim K \sim \phi$ $\phi$ could be (for all $S$ knows)                                 | epistemically possible worlds, worlds consistent with what $S$ knows   |
| Deontic      | $O\phi$ $\phi$ is obligatory                                                                              | $P\phi$ $\phi$ is permissible                                                          | permissible worlds, ways the world may be (given the ambient morality) |

*Remarks.*

- The glosses do some violence to grammar: e.g. “Snow is white will always be” is much less unhappily rendered “Snow will always be white”
- We’ll usually interpret the “modal” in “modal logic” widely to encompass semantic and proof-theoretic investigation of all these non-extensional connectives
- We’ll often continue to use  $\Box$  and to talk of ‘worlds’, etc., even when we don’t have the metaphysical interpretation specifically in mind.  
(Recall that in a model, worlds are just the elements of any non-empty set)

### C.IV.2. Towards MPL I: against SMPL.

All instances of the following schemas are SMPL-valid:

$$(D) \models_{\text{SMPL}} \Box\phi \rightarrow \Diamond\phi$$

$$(T) \models_{\text{SMPL}} \Box\phi \rightarrow \phi$$

$$(B) \models_{\text{SMPL}} \phi \rightarrow \Box\Diamond\phi$$

$$(4) \models_{\text{SMPL}} \Box\phi \rightarrow \Box\Box\phi$$

$$(5) \models_{\text{SMPL}} \Diamond\phi \rightarrow \Box\Diamond\phi$$

*Question.* Is this plausible? Are the instances of these schemas logical truths?

It depends on how we interpret the  $\Box$  and  $\Diamond$ . For example.

- *metaphysical modality*:  $\Box\phi =$  necessarily  $\phi$ . The five validities are fairly widely accepted (but some, notably (4) and (5), are not uncontroversial.)
- *temporal modality*:  $\Box\phi = \mathsf{H}\phi =$  it has always been the case that  $\phi$ . Instances of (4) seems fine; but (T), (B) and (5) have clearly false instances; (D) make a disputable assumption about the structure of time.<sup>1</sup>
- *epistemic modality*:  $\Box\phi = \mathsf{K}\phi = S$  knows that  $\phi$ : The schema (4)—known in this context as the KK- or positive introspection principle—and (5)—the negative introspection principle are controversial.

### C.IV.3. Towards MPL II: motivating accessibility

How do we remove the unwanted validities for e.g. temporal interpretations of  $\Box$  and  $\Diamond$ ?

- The obvious culprit is the SMPL-truth-conditions for  $\Box$ . For  $\Box = \mathsf{H}$ , we get:  
**SMPL:**  $\mathsf{H}\phi$  is true at  $t$  iff  $\phi$  is true at every time.
- But intuitively, the correct truth-condition is this:  
**MPL:**  $\mathsf{H}\phi$  is true at  $t$  iff  $\phi$  is true at every time  $s$  earlier than  $t$ .

Suitably generalized, this is the approach we take in the full semantics for MPL.

---

<sup>1</sup>Here we're taking  $\mathsf{H}\phi$  to be talking about the strict past—before now—an alternative, non-strict, gloss includes the present moment: ‘ $\phi$  is and always has been’. (T) holds for this reading. Compare LfP 188.

## C.V. Semantics

MPL takes necessary truth to be truth in all *accessible* worlds:

**MPL truth-conditions for  $\Box\phi$ :**

- $\Box\phi$  is true at  $w$  iff  $\phi$  is true at every world  $u$  accessible from  $w$

*Remarks.*

- Different modalities call for different accessibility relations (as well as different worlds).
- The SMPL truth-conditions remain as the special case when accessibility is the universal relation on worlds—that is, every world is accessible from every world.

### C.V.1. Kripke models

We add an accessibility relation as a third component in models

**Definition of MPL-model.** A MPL-model is a triple:  $\langle \mathcal{W}, \mathcal{R}, \mathcal{I} \rangle$  where:

- $\mathcal{W}$  is a non-empty set (“the set of possible worlds”)
- $\mathcal{R}$  is a binary relation over  $\mathcal{W}$  (“accessibility relation”)
- $\mathcal{I}$  is a two-place function that assigns each sentence-letter–world pair a truth-value, 1 or 0 (“interpretation function”)

*Remarks.*

- $\mathcal{W}$  and  $\mathcal{I}$  are the same as in the definition of SMPL-model.
- $\mathcal{R}wv$  is read ‘ $v$  is accessible from  $w$ ’ (informally: ‘ $w$  sees  $v$ ’, etc.)

### C.V.2. MPL-valuations

We modify the truth-conditions for  $\Box$  in the definition of a valuation:

**Definition of MPL-valuation.** Given an MPL-model  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \mathcal{I} \rangle$ , the *valuation for  $\mathcal{M}$* ,  $V_{\mathcal{M}}$ , is the two place function that assigns 0 or 1 to each MPL-wff and meets the following four conditions, for each  $w \in \mathcal{W}$ :

- $V_{\mathcal{M}}(\alpha, w) = \mathcal{I}(\alpha, w)$ , for each sentence letter  $\alpha$
- $V_{\mathcal{M}}(\phi \rightarrow \psi, w) = 1$  iff  $V_{\mathcal{M}}(\phi, w) = 0$  or  $V_{\mathcal{M}}(\psi, w) = 1$
- $V_{\mathcal{M}}(\sim\phi, w) = 1$  iff  $V_{\mathcal{M}}(\phi, w) = 0$
- $V_{\mathcal{M}}(\Box\phi, w) = 1$  iff  $V_{\mathcal{M}}(\phi, v) = 1$  for all  $v \in \mathcal{W}$  such that  $\mathcal{R}wv$

### C.V.3. S-Validity

Different modal systems—with different sets of tautologies, different consequence relations—result from imposing different conditions on accessibility:

| System | Condition(s) on $\mathcal{R}$                                                                            | i.e.                                                                                   |
|--------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| K      | —                                                                                                        |                                                                                        |
| D      | $\mathcal{R}$ is serial on $\mathcal{W}$                                                                 | for each $w \in \mathcal{W}$ , there is some $u$ s.t. $\mathcal{R}wu$                  |
| T      | $\mathcal{R}$ is reflexive on $\mathcal{W}$                                                              | for each $w \in \mathcal{W}$ , $\mathcal{R}ww$                                         |
| B      | $\mathcal{R}$ is reflexive on $\mathcal{W}$<br>$\mathcal{R}$ is symmetric                                | for each $w, v$ , $\mathcal{R}wv$ implies $\mathcal{R}vw$                              |
| S4     | $\mathcal{R}$ is reflexive on $\mathcal{W}$<br>$\mathcal{R}$ is transitive                               | for each $w, v, u$ , $\mathcal{R}wv$ and $\mathcal{R}vu$ jointly imply $\mathcal{R}wu$ |
| S5     | $\mathcal{R}$ is reflexive on $\mathcal{W}$<br>$\mathcal{R}$ is symmetric<br>$\mathcal{R}$ is transitive |                                                                                        |

Let  $S$  be one of K, D, T, B, S4 or S5. When an MPL model's accessibility relation  $\mathcal{R}$  meets the associated condition, it is called an *S-model*.

**Definition of MPL-validity** (Valid in a model). Let  $\phi$  be an MPL-wff.

- $\phi$  is valid in an MPL-model  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \mathcal{I} \rangle$  iff  $V_{\mathcal{M}}(\phi, w) = 1$  for every  $w \in \mathcal{W}$
- $\phi$  is valid in  $S$ — $\models_S \phi$ —iff  $\phi$  is valid in every S-model.

## C.VI. Mathematical methods in modal logic

### C.VI.1. Establishing validity

To show  $\models_S \phi$  it suffices to show that the supposition that  $V_{\mathcal{M}}(\phi, w) = 0$  leads to a contradiction given the condition on  $\mathcal{R}$  imposed by  $S$  (for  $\mathcal{M} = \langle \mathcal{W}, \mathcal{R}, \mathcal{I} \rangle$  and  $w \in \mathcal{W}$ ).

*Worked Example.* Show  $\models_D \Box P \rightarrow \Diamond P$

### C.VI.2. Establishing invalidity

To establish the S-invalidity of  $\phi$  we need to specify a countermodel—i.e. an S-model  $\langle \mathcal{W}, \mathcal{R}, \mathcal{I} \rangle$  such that  $V_{\mathcal{M}}(\phi, w) = 0$  for some  $w \in \mathcal{W}$ .

*Worked Example.* Show  $\not\models_K \Box P \rightarrow \Diamond P$

*Remark.* Sider presents a helpful method for generating counterexamples. See LfP 6.3.3.