Thin Objects An Abstractionist Account by Øystein Linnebo

James StuddUniversity of Oxford

Author meets Critics APA Eastern Division Meeting Wednesday 8th January 2020

Abstractionism

Two main strands:

(M) Mathematics – or substantial amounts of it – may be based on **abstraction principles** (APs), or similar:

$$\forall \alpha \forall \beta (\S(\alpha) = \S(\beta) \leftrightarrow \alpha \sim \beta) \tag{AP}$$

$$\alpha, \beta$$
 - 'specifications' $\alpha \sim \beta$ - 'unity relation' $\S(\alpha)$ - 'abstract'

(P) APs – or 'good' APs – enjoy a privileged epistemic status

Frege: the abstractionist prototype

$$(\mathbf{M}_{F})$$
 BLV + SOL interprets PA
ext $F = \operatorname{ext} G \operatorname{iff} F$ and G are coextensive (BLV)

SOL – full second-order logic

(P_F) BLV is a law of logic

But we all know how that went:

Bad company #1: BLV + SOL $\vdash \bot$ (Russell's paradox)

- assuming SOL is okay (as we shall henceforth):
 - M_F is trivial
 - P_F is untenable

Hale and Wright: the neo-Fregean programme

(M_{HW}-1) HP + SOL interprets PA (Frege's theorem)
$$\#F = \#G \text{ iff } F \text{ and } G \text{ are equinumerous}$$
 (HP)

(\mathbf{M}_{HW} -2) New V + SOL interprets a substantial subtheory of ZF ext F = ext G iff F and G are both universe-sized or coextensive (New V)

(P_{HW}) HP and other good APs are 'implicit definitions'

Bad company #2: which APs are good?

```
Satisfiable

Scylla \tau Unbounded \tau Conservative \tau inconsistent \tau can't interpret ZFU

Strongly Stable without relativization
```

A different approach – predicative vs impredicative APs

Neo-Fs: APs may have an 'impredicative' character – e.g.:

$$\{xx\} = \{yy\} \leftrightarrow \forall z(z < xx \leftrightarrow z < yy)$$
 (V)

 $-\{xx\}$ and $\{yy\}$ must denote something in domain of $\forall z$

neo-Fs defend impredicative APs via ∀-absolutism:

∀-absolutism: ∀ ranges over an absolutely comprehensive domain

Linnebo: APs should be 'predicative' – e.g.

$$\{xx\} = \{yy\} \leftrightarrow \forall z(z < xx \leftrightarrow z < yy) \tag{2V}$$

 $-\{xx\}$ and $\{yy\}$ may denote something outside domain of $\forall z$

Linnebo's abstractionism

$$\forall \alpha \forall \beta (\S(\alpha) = \S(\beta) \leftrightarrow \alpha \sim \beta)$$
 (2AP)

"free truths"? - community C lay down assertibility-conditions, e.g.:

(AC)
$$\forall \alpha \forall \beta$$
: $\lceil \S(\alpha) = \S(\beta) \rceil$ is assertible of α and β iff $\alpha \sim \beta$

ØL argues – best interpretation of C renders 2AP true and knowable

– let's just **grant**
$$P_L$$
:

PFO – two-sorted plural logic

Bad company #3 – a 'simple and definitive' solution?

- 2V + PFO ⊬ ⊥ 'just about any' 2AP okay
- $2V + PFO \vdash \exists y \forall x (x \neq y)$ \forall -absolutism fails
- 2AP + PFO \(\nabla \) "there are more than two abstracts"

Q1: how do we overcome weakness of 2APs to obtain PA or ZF?

Q1: overcoming weakness of predicative abstraction (ZF)

```
A1 (ZF): iterating 2V-style abstraction (\infty-ly many times)
```

 $\Box \phi$: 'however we abstract, ϕ ' $\Diamond \phi$: 'we can abstract so that ϕ '

MS: MPFO + Foundation + six more axioms: \Box – interpretational

```
A1. \Box \forall uu \diamond \exists x \text{Set}(uu, x) A2. x = y \leftrightarrow \forall u(u \in x \leftrightarrow u \in y)
```

A3.
$$\Box \forall y \exists xx \ \Box \forall x(x \prec xx \leftrightarrow x \in y)$$
 A4. $\Box \forall y \exists xx \ \Box \forall x(x \prec xx \leftrightarrow x \subseteq y)$

A5.
$$\Box \forall \vec{v}(\phi^{\diamondsuit}(\vec{v}) \rightarrow \diamondsuit \phi(\vec{v}))$$

A6.
$$\operatorname{fn}[\phi]^{\diamondsuit} \to \Box \forall xx \diamondsuit \exists yy(\forall x < xx)(\exists y < yy)(\phi^{\diamondsuit}(x, y))$$

(M_L-1) MS interprets ZF

– and, although ∀-absolutism fails, ØL endorses:

 $\Box \forall$ -absolutism: $\Box \forall$ and $\Diamond \exists$ generalize about the whole hierarchy

Q2: even if 2APs are, are MS-axioms "free truths" (or similar)?

Q1: overcoming weakness of predicative abstraction (PA)

A1 (PA): one round of modal predicative abstraction

Two key assumptions (for suitable \S and \sim): \Box – metaphysical

$$\Box \, \forall \alpha \forall \beta \big(\S(\alpha) = \S(\beta) \leftrightarrow \alpha \sim \beta \big) \tag{\Box 2AP)}$$

$$\Box \forall x (ABST_{\S}(x) \to \Box \exists y (y = x))$$
 (\(\sigma E)

ØL: □E – 'very plausible' and 'very widely shared'

– but □E conflicts with another plausible assumption:

No Specificationless Abstracts: an abstract item exists only if some of its specifications exist -e.g. { \emptyset L} exists only if \emptyset L exists

Q3: how can we 'introduce' an abstract without its specification?

Q3: 'introducing' specificationless abstracts?

A3 [suggested]: predicative abstraction on possible specifications

Frame assertibility-conditions with a modal language (with @):

(AC*)
$$\Pi \alpha \Pi \beta$$
: @ $\lceil \S(\alpha) = \S(\beta) \rceil$ is assertible of α and β iff $\alpha \sim \beta$

$$\Pi \alpha = @ \Box \forall \alpha @$$

– adapting ØL's style of argument...

$$(\mathbf{P}_{L}^{\star})$$
 2AP*s are "free truths"

$$\Pi \alpha \Pi \beta (@(\S(\alpha) = \S(\beta)) \leftrightarrow \alpha \sim \beta)$$
 (2AP*)

– cost: renounce part of \emptyset L's view? \square – interpretational

 $\Box \forall$ -absolutism fails: $2AP^* + MPFO_@ \vdash @\exists yy \Box \forall xx(xx \neq yy)$

2APs – a 'simple and definitive' solution to bad company?

We've been granting:

(P_L) 2APs are "free truths"

Ouestions:

Q1: how do we overcome weakness of 2APs to obtain PA or ZF?

A1 (ZFC): transfinite iteration of predicative abstraction

– Q2: are the MS-axioms "free truths"?

A1 (PA): modal predicative abstraction

- Q3: how do we introduce specificationless abstracts?
- A3 [suggested]: abstraction on possible specifications
 - **Q4:** are $2AP^*s$ "free truths" (contrary to $\Box \forall$ -absolutism)?

Appendix: MPFO@

The system MPFO@ comprises the following:

- a free, two-sorted formulation of PFO
- a normal modal system for □ and @
- further axioms governing @:

```
a1: @\neg\phi \leftrightarrow \neg @\phi
```

a2:
$$@(\phi \rightarrow \psi) \rightarrow (@\phi \rightarrow @\psi)$$

a3:
$$@(@\phi \to \phi)$$

a4:
$$\lozenge @ \phi \rightarrow @ \phi$$

a5:
$$@[\forall v @ \phi \leftrightarrow @ \forall v \phi]$$