127: Lecture notes HT20. Week 5.

F. Brief review of classical predicate logic (PC)

F.I. Syntax (LfP 4.1)

F.I.1. Primitive symbols

Primitive vocabulary of PC (LfP 90):
e connectives: —, ~,V
e variables: z,y, ... (with or without numerical subscripts)
e n-place predicates F, G, ... (with or without numerical subscripts)
e individual constants (names): a,b,... (with or without numerical subscripts)

e parentheses

Terminology. We'll often drop the “individual” and just call a,b,... “constants”.

F.1.2. Complex expressions

We simultaneously define (PC-) term and (PC-) wif recursively:

Definition of a term (for PC) (LfP 90):
e If o is a variable or an individual constant, « is a term.
Definition of a wff (for PC):

e If IT is an n-place predicate and ay, ..., a, are terms, Ilay, ..., «a, is a wif.

e If ¢ and ¢ are wifs, and « is a variable, ~¢, (¢ — 1), and Ya¢ are wis.

Remark. Only strings that can be shown to be terms and wifs using these clauses are wifs.
We’ll leave this qualification tacit in the following.

F.1.3. Free variables

Definition of free variable occurrence (LfP 91): an occurrence of variable « in
wit ¢ is bound in ¢ iff it occurs in a wif of the form Vai). Otherwise it is free.

Remark. In other words all and only the occurrences of « in the scope of a Va are bound.

F.I.4. Unofficial connectives

The connectives A, v and <> are introduced as before; we also add 3:

Definition of 3 (in the metalanguage, LfP 91): Ja¢ is short for ~Va~dg.

32

127: Lecture notes HT20. Week 5.

F.II. Semantics (LfP 4.2)
F.II.1. PC-Models

The primitive symbols of PC, save for variables, are interpreted by a PC-model:

Definition of a PC-model A PC-model is a pair (Z,.#) such that:
e 7 is a non-empty set (“the domain”)
e .7 is a function meeting the following conditions: (“the interpretation function”)

— J(a) € Z for a a constant
— Z(II) is an n-place relation over & for n-place predicate 11

Remark. Recall that an n-place relation over Z is a set of n-tuples of members of Z.

F.I1.2. Variable assignments

The variables of PC are interpreted by a variable assignment:

Definition of a variable assignment: a wvariable assignment g for a PC-model
(2,7 is a function with g(«) € Z for each variable a.

The semantics for quantifiers also deploy the following notion:

Definition of a variant assignment: When g is a variable assignment for (2, .%)
and u € ¥, we define g_ as follows:

aroy) 9(B) I B #a

F.I1.3. Term denotations

The denotation of a term is settled by either the model or the assignment:

Definition of term denotation: Let .Z = (Z,.#) be a PC-model, g an assignment
for A

e [a]y, = F(a)if ais a constant
o [alyy = g(a) if o is a variable

33

127: Lecture notes HT20. Week 5.

F.I1.4. PC-valuations

Valuations assign truth-values to wifs:

Definition of valuation (for PC) (LfP 94): The valuation function, V, , for a PC-
model # = (2,.7) and variable assignment g is the unique function that assigns 0 or
1 to each wif and satisfies the following conditions:

VugMay...opn) = 1iff Jailzg, -, [anlr,g) € (1), for terms o, n-ary predicate II.
Viug(~¢) =1iff Vy o(¢) = 0, for wif ¢.

Viugd—1)=1if V() =0o0r Vy,(p) =1, for wits ¢ and .

Vyg(Yag) = 1iff, for every u € 2, V4 4o (¢) = 1, for wif ¢ and variable a.

This delivers the expected truth-condition for 3:
Remark. Vy(3ag) = 1 iff, for some v € Z, Vga(¢) = 1.

F.I1.5. Validity

Truth is defined as truth under all assignments:

Definition of truth in a model (LfP 95): a wif ¢ is true in a PC-model .Z iff
Vu.q(¢) =1 for every assignment g for .

Note that the truth-value of a sentence is unaffected by the assignment, indeed:

Fact about variable assignments: if ¢ and h agree on the free variables in ¢,
Vi g(9) = Vo .n(9)-

Proof. Sheet 5, q. 1. |

And, as usual, validity is defined as truth in all models:

Definition of PC-validity (LfP 95): a wff ¢ is PC-valid—in symbols: Epe ¢—iff ¢
is true in all PC-models.

Remark. One way to show Epc ¢ is to show that V4 ,(¢) = 0 generates a contradiction.

F.I1.6. Semantic Consequence

Semantic consequence is defined as truth preservation in every model and assignment:

Definition of PC-semantic consequence: a wif ¢ is a semantic consequence of a
set of wits I'—I" =pc ¢p—iff Vs 4(¢) = 1 for every PC-model .Z and assignment g with
Vyg(y) =1 for each yeT.

34

127: Lecture notes HT20. Week 5.

G. Four extensions of PC.

G.I. The identity predicate, = (LfP 5.1)

To add = as a further logical primitive, we amend the syntax and semantics of PC:

G.I.1. Complex expressions

Terms and wifs are defined as before, with one additional clause in the definition of wif:

Definition of a wff [additional clause for =] (L{fP 107):

e If o and [are terms, then o = 3 is a wif.

G.I1.2. Valuations

We add one further clause to the definition of a valuation:

Definition of valuation [additional clause for =] (LfP 108):
o Viygla=p)="1iff [alsg = [Blr,

If we're just adding identity, the definition of term denotation remains the same.

Remark. To just add =, these are the only changes we make:
e The notion of model remains the same as for PC (without =).
e The definitions of validity and consequence also remain the same.

e This is the case for all of the extensions considered in this section.’

G.I1.3. Application: numerical quantifiers

Identity lets us express numerical quantifiers (which can’t be symbolized in PC):

Fzxample. Symbolize ‘There is exactly one F”.

'But it’s not the case if we add further non-logical expressions—e.g. function symbols, see LfP 5.2.

35

127: Lecture notes HT20. Week 5.

G.II. The description operator, ¢ (LfP 5.3)

We know how—with some violence to surface form—to capture definite description in PC
with = by applying Russell’s theory of descriptions—an alternative is to use ¢.

Worked Example. Formalize the following sentence:
(1) The author of Logic for Philosophy likes metaphysics.
(i) in the language of PC with =; (ii) in the language of PC with «.

G.II.1. Complex expressions

Definition of a term [additional clause for ¢| (LfP 114):

o If ¢ is a wif and « is a variable, then ta¢ is a term.

Notation. We sometimes write ta.¢ to improve readability.

G.I1.2. Term denotations

Definition of term denotation: [additional clause for ¢| (LfP 115)

the w in & such that V, s(¢) = 1 if there is a unique such u

L [LB¢]///,g = {

undefined, else

G.I1.3. Valuations

Definition of valuation [modified clauses for possibly undefined -terms|
o Vy,(Iay,...,a,) =1
iff [a1]syg, .- [on)a,g are all defined and {[a1]s g, - - - [an].zg) € F (1)

Remarks.
1. Note that denotation/valuation are now defined simultaneously by recursion.

2. The new definition makes all formulas of the form Ilaq, ..., «,, false, with undefined
t-terms false.

3. To add ¢ and = we combine the additions in the obvious way—similarly for the other
additions.

4. If we have = too we modify its semantic clause analogously to make o = 3 false for
undefined ¢-terms (see LfP 115).

5. There’s a sense in which ¢ is eliminable in the presence of identity—see LfP 117.

36

127: Lecture notes HT20. Week 5.

G.III. The lambda operator, A (LfP 5.5)

Just as ¢ makes complex terms, A makes complex predicates.

Worked Example. Formalize the following sentence, with and without A:

(2) Logic is such that it is good and necessary.

To extend PC (or an extension of PC) with A\, we make the following additions:

G.III.1. Complex predicates

Complex predicates are defined recursively alongside terms and wifs:

Definition of a complex predicate [new clause for A] (LfP 126):

e if o is a variable and ¢ a wiff, then Aa¢ is a one-place predicate.

Notation. When F' is unary, we write AeFzy as AxFz(y) or (A\x.Fz)(y).

G.II1.2. Valuations

One preliminary definition—in effect, we take the extension of the complex predicate Aa¢
to be defined as follows:

Definition: “extension of Aag¢” (LfP 120): ¢79* = {ue D : V4o (¢) = 1}

Remark. The idea is that ¢(a)%9* is the set of things that satisfy ¢(a)—make ¢(a) true
when assigned to a—but since ¢(a) may in general contain more than one free variable,
we need to specify an assignment to fix the values of the others.

Worked Example. Suppose ¢g(y) = 5 and that .# has . with:
J(F)={neN:nis even}
J(L) ={(n,my:n,meN,n<m}

Compute: (Ex A Lzy)?9°.

We then add the following clause for complex predicates to the definition of valuation:

Definition of valuation [additional clause for A-predicates]

o Vag(Aad)(B) = 1iff [Bla, € o0

37

127: Lecture notes HT20. Week 5.

G.IV. Second-order logic (SOL) (LfP 5.4.3)

First-order logic (FOL)—e.g. PC—quantifies into name position; SOL also quantifies into
predicate position.

We add n-place predicate variables X, Y, ... and second-order quantifiers VX to FOL:

G.IV.1. Complex expressions

Definition of a wff [additional clauses for SOL] :

e If 7w is an n-place predicate variable, and ay, ..., a, are (individual) terms, then
mTQy ... oy, 1S a Wit

e If 7 is an n-place predicate variable and ¢ is a wif, V7¢ is a wif.

Ezample. VX(Xa v ~Xa) is a wif.

G.IV.2. Variable assignments

The notion of model is unchanged from PC. Assignments and variants are generalized in
the natural way: assignments now also map n-place predicate variables to n-place relations.

Definition of a variable assignment: a variable assignment g for a PC-model
(9,.7) is a function which assigns a member of Z to each individual variable o and
an n-place relation over 2 to each n-place predicate variable 7.

Definition of a variant assignment: When ¢ is a variable assignment for (Z,.#)
and U is an n-place relation over & we define, gf; as follows:

v Uifo=nm

7(0) = {g(a) ifo#m

G.IV.3. Valuations

Definition of PC-valuation [additional clauses for SOL]

o Viyg(man,...,an) = 1iff {(au]ag, - - [on]ing) € 9(m)
o Vy,4(Vmg) = 1iff, for every n-place relation U over Z, V4 4= (¢) = 1

G.V. Further extensions

e Function symbols: LfP 5.2.
e Generalized quantifiers, e.g. ‘most’: LfP 5.4.1-2.

38

