

H. Quantified Modal Logic (QML)

H.I. Syntax (LfP 9.1)

H.I.1. Primitive symbols

We add a \Box to the syntax of PC with $=$.

Primitive vocabulary of QML: parentheses, and the following:

- connectives/quantifier: $\rightarrow, \sim, \Box, \forall$
- variables: x, y, \dots (with or without numerical subscripts)
- n -place predicates F, G, \dots (with or without numerical subscripts), for each $n > 0$.
- binary predicate: $=$
- individual constants (names): a, b, \dots (with or without numerical subscripts)

Remark. No 0-place predicates, i.e. sentence letters.

H.I.2. Complex expressions

Define QML-term and QML-wff just as in PC with $=$, adding a clause for \Box .

Definition of a QML-term:

- If α is a variable or an individual constant, α is a term.

Definition of a QML-wff:

- If Π^n is an n -place predicate and $\alpha_1, \dots, \alpha_n$ are terms, $\Pi^n \alpha_1, \dots, \alpha_n$ is a wff.
- If α and β are terms, then $\alpha = \beta$ is a wff.
- If ϕ and ψ are wffs, and α is a variable, $\sim\phi, (\phi \rightarrow \psi), \Box\phi$ and $\forall\alpha\phi$ are wffs.

Remarks.

- The usual ‘unofficial’ connectives are introduced in the usual way.
- Free and bound variable occurrences are defined in the same way as before.

Worked Example. $\exists y \Box y = x$ is a QML-wff (with the x occurring free, and the y bound).

H.I.3. Symbolization

Worked Example. Disambiguate the following by giving two QML-symbolizations:

- (1) Every Polish logician is necessarily a logician

Remark. A QML-wff is said to be *de re* if it has a subformula of the form $\Box\phi(\alpha)$ in which the variable α occurs freely; otherwise it is *de dicto*.

H.II. Semantics: SQML (LfP 9.3)

H.II.1. SQML-models

Let's start with a simple—constant domain—semantics for QML.

Definition of a SQML-model (LfP 230): A SQML-model is a triple $\langle \mathcal{W}, \mathcal{D}, \mathcal{I} \rangle$:

- \mathcal{W} is a non-empty set ('the set of worlds')
- \mathcal{D} is a non-empty set ('domain')
- \mathcal{I} is a function such that: ('interpretation function')
 - $\mathcal{I}(\alpha) \in \mathcal{D}$ for each constant α
 - $\mathcal{I}(\Pi^n)$ is a set of $n + 1$ -tuples of the form $\langle u_1, \dots, u_n, w \rangle$, where u_1, \dots, u_n are members of \mathcal{D} and $w \in \mathcal{W}$, for each n -place predicate Π^n

Note. No accessibility relation, \mathcal{R} .

H.II.2. Intensions and Extensions

$\mathcal{I}(\Pi^n)$ tells us which n -tuples of possibilia satisfy which predicates in which worlds.

- Recall that a (non-modal) PC-model $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$ assigns extensions to predicates:
 - e.g. for unary F , $\mathcal{I}(F)$ is a set of members of \mathcal{D}
 - Fa is true in \mathcal{M} iff $\mathcal{I}(a) \in \mathcal{I}(F)$.
- Similarly a SQML-model $\mathcal{M} = \langle \mathcal{W}, \mathcal{D}, \mathcal{I} \rangle$ assigns 'intensions' to predicates:
 - e.g. for unary F , $\mathcal{I}(F)$ is a set of pairs $\langle d, w \rangle$ with $d \in \mathcal{D}$ and $w \in \mathcal{W}$.
 - Fa is true at w in \mathcal{M} iff $\langle \mathcal{I}(a), w \rangle \in \mathcal{I}(F)$.

We can re-package the information from an intention in terms of w -extensions:

Definition of a w -extension: given a SQML-model $\mathcal{M} = \langle \mathcal{W}, \mathcal{D}, \mathcal{I} \rangle$, the extension of an n -place predicate Π^n at world w —in symbols: $\mathcal{I}_w(\Pi^n)$ —is defined as follows:

$$\mathcal{I}_w(\Pi^n) = \{ \langle u_1, \dots, u_n \rangle : \langle u_1, \dots, u_n, w \rangle \in \mathcal{I}(\Pi^n) \}$$

Remark. All the w -extensions for $w \in \mathcal{W}$ uniquely determine the intension and vice versa.

H.II.3. SQML-models vs. PC-models

SQML-models generalize PC-models much as SMPL-models generalize PL-models:

	<i>Meaning in PL/PC</i>	<i>Meaning in SMPL/SQML</i>
Sentence letter P	extension i.e. truth-value	intension i.e. extension at w , for each $w \in \mathcal{W}$
Unary predicate F	extension i.e. set	intension i.e. extension at w , for each $w \in \mathcal{W}$

H.II.4. Term denotations

Variable assignments, and term denotations are defined as in PC:

Definition of term denotation: Let $\mathcal{M} = \langle \mathcal{W}, \mathcal{D}, \mathcal{I} \rangle$ be an SQML-model:

- An assignment g for \mathcal{M} is a function that maps each variable to a member of \mathcal{D} .
- For term α , we define its denotation in \mathcal{M} relative to assignment g :

$$[\alpha]_{\mathcal{M},g} = \begin{cases} \mathcal{I}(\alpha) & \text{if } \alpha \text{ is a constant} \\ g(\alpha) & \text{if } \alpha \text{ is a variable} \end{cases}$$

Remark. The variant assignment g_d^α is defined as before.

H.II.5. Valuations

Definition of valuation (for SQML): The valuation function, $V_{\mathcal{M},g}$, for a SQML-model $\mathcal{M} = \langle \mathcal{W}, \mathcal{D}, \mathcal{I} \rangle$ and variable assignment g is the unique function that assigns 0 or 1 to each wff at each world and satisfies the following conditions:

Atomic formulas: for terms: $\alpha, \beta, \alpha_1, \dots, \alpha_n$, and n -ary predicate, Π^n :

- $V_{\mathcal{M},g}(\alpha = \beta, w) = 1$ iff $[\alpha]_{\mathcal{M},g} = [\beta]_{\mathcal{M},g}$
- $V_{\mathcal{M},g}(\Pi^n \alpha_1, \dots, \alpha_n, w) = 1$ iff $\langle [\alpha_1]_{\mathcal{M},g}, \dots, [\alpha_n]_{\mathcal{M},g}, w \rangle \in \mathcal{I}(\Pi^n)$

Connectives: for formulas ϕ and ψ :

- $V_{\mathcal{M},g}(\phi \rightarrow \psi, w) = 1$ iff $V_{\mathcal{M},g}(\phi, w) = 0$ or $V_{\mathcal{M},g}(\psi, w) = 1$
- $V_{\mathcal{M},g}(\sim \phi, w) = 1$ iff $V_{\mathcal{M},g}(\phi, w) = 0$

Modal operators: for formula ϕ :

- $V_{\mathcal{M},g}(\Box \phi, w) = 1$ iff, for every $v \in \mathcal{W}$, $V_{\mathcal{M},g}(\phi, v) = 1$

Quantifiers: for formula ϕ and variable α :

- $V_{\mathcal{M},g}(\forall \alpha \phi, w) = 1$ iff, for every $d \in \mathcal{D}$, $V_{\mathcal{M},g_d^\alpha}(\phi, w) = 1$

Remark. The clause for atomic formulas may be reformulated in terms of w -extensions:

- $V_{\mathcal{M},g}(\Pi \alpha_1, \dots, \alpha_n, w) = 1$ iff $\langle [\alpha_1]_{\mathcal{M},g}, \dots, [\alpha_n]_{\mathcal{M},g}, w \rangle \in \mathcal{I}_w(\Pi)$

H.II.6. Validity (LfP 231)

SQML-validity is truth at every world of, and every assignment for, every SQML-model.

Worked Example. Show that:

1. $\models_{\text{SQML}} \Box \forall x(Px \wedge Lx \rightarrow Lx)$
2. $\not\models_{\text{SQML}} \forall x(Px \wedge Lx \rightarrow \Box Lx)$.

H.III. Axiomatic proofs in PC (LfP 4.4)

To start with, let's extend axiomatic proof to PC.

H.III.1. Proof in PC

As in PL, a proof of a wff ϕ from a set of wffs Γ is a finite sequence of wffs terminating in ϕ each of which is either an axiom, a member of Γ , or follows from earlier members of the sequence by the application of a rule—when there is such a proof, we write $\Gamma \vdash_{\text{PC}} \phi$.

Warning. Except when otherwise stated—e.g. for the proof of completeness—this is always the way we define an axiomatic proof from assumptions.

Axiomatic system for PC (LfP 99)

- *Rules:* All PC-instances of (MP) and (UG) are PC-rules:

$$\frac{\phi \rightarrow \psi \quad \phi}{\psi} \text{ MP} \quad \frac{\phi}{\forall \alpha \phi} \text{ UG}$$

where in UG α is a variable.

- *Axioms:* All PC-instances of the PL-schemas are PC-axioms:

$$\phi \rightarrow (\psi \rightarrow \phi) \quad (\text{PL1})$$

$$(\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)) \quad (\text{PL2})$$

$$(\sim \psi \rightarrow \sim \phi) \rightarrow ((\sim \psi \rightarrow \phi) \rightarrow \psi) \quad (\text{PL3})$$

- All PC-instances of (PC1) and (PC2) that meet the side-conditions specified below are PC-axioms:

$$\forall \alpha \phi \rightarrow \phi(\beta/\alpha) \quad (\text{PC1})$$

$$\forall \alpha (\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \forall \alpha \psi) \quad (\text{PC2})$$

Definition of a PC-instance. A PC-instance of a schema is the result of uniformly replacing each schematic formula letter ϕ, ψ, \dots with a PC-wff, and each schematic term α, β, \dots with a PC-term.

Side-conditions on (PC1) and (PC2)

- (PC1) is subject to the constraint that α is a variable, and $\phi(\beta/\alpha)$ results from ϕ by correct substitution of β for α (see below).
- (PC2) is subject to the constraint that α is a variable that does not occur freely in ϕ .

H.III.2. Correct substitution

Unchecked, (PC1) generates non-valid instances, e.g. $\not\models_{\text{PC}} \forall x \exists y Rxy \rightarrow \exists y Ryy$.

We need to ensure that the variable substituted for x is not unintentionally bound by other quantifiers.

Definition of correct substitution

- Say that β is *substitutable* for α in ϕ if α does not occur free in any subformula of ϕ beginning with $\forall\beta$.
- When β is substitutable for α in ϕ , *the formula which results from ϕ by correct substitution of β for α* —in symbols: $\phi(\beta/\alpha)$ —is the formula that results from replacing all and only free occurrences of α in ϕ with β .

Worked Example. Compute: (i) $(\forall y Ryx)(z/x)$, (ii) $(\forall y Ryx)(x/y)$, (iii) $(\forall y Ryx)(y/x)$.

Remark. This amounts to Sider's definition, LfP 100—see also Exercise Sheet 6.

H.III.3. Abbreviating proofs in PC

As in MPL-proofs, we often abbreviate proofs by helping ourselves to PC-instances of the meta-rule PL.

PL: (LfP101) Suppose $\phi_1 \rightarrow (\phi_2 \rightarrow \dots (\phi_n \rightarrow \psi))$ is an PC-tautology. Then we help ourselves to the following meta-rule in abbreviated proofs:

$$\frac{\phi_1 \dots \phi_n}{\psi} \text{ PL}$$

Worked Example. Construct an abbreviated proof to show that:

$$\vdash_{\text{PC}} \forall x(Fx \wedge Gx) \rightarrow \forall x Fx$$

H.III.4. Adequacy

When Γ is a set of PC-sentences and ϕ a PC-sentence (none of which contain free variables).

Soundness and completeness (LfP 105): $\Gamma \vdash_{\text{PC}} \phi$ iff $\Gamma \vDash_{\text{PC}} \phi$.

H.IV. Axiomatic proofs in SQML (LfP 9.7)

H.IV.1. Proofs in SQML

Axiomatic system for SQML (LfP 249–50)

- *Rules:* All QML-instances of MP, UG and NEC (where, in UG, α is a variable):

$$\frac{\phi \rightarrow \psi \quad \phi}{\psi} \text{ MP} \quad \frac{\phi}{\forall \alpha \phi} \text{ UG} \quad \frac{\phi}{\Box \phi} \text{ NEC}$$

- *Axioms:* All QML-instances of the PL-schemas are SQML-axioms:

$$\phi \rightarrow (\psi \rightarrow \phi) \tag{PL1}$$

$$(\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \chi)) \tag{PL2}$$

$$(\sim \psi \rightarrow \sim \phi) \rightarrow ((\sim \psi \rightarrow \phi) \rightarrow \psi) \tag{PL3}$$

- All QML-instances of PC-schemas meeting the side-conditions are SQML-axioms:

$$\forall \alpha \phi \rightarrow \phi(\beta/\alpha) \tag{PC1}$$

$$\forall \alpha (\phi \rightarrow \psi) \rightarrow (\phi \rightarrow \forall \alpha \psi) \tag{PC2}$$

- All QML-instances of (RX) and (II) are SQML-axioms:

$$\alpha = \alpha \tag{RX}$$

$$\alpha = \beta \rightarrow (\phi(\alpha) \rightarrow \phi(\beta)) \tag{II}$$

where, in (II), β is substitutable for α and $\phi(\beta)$ results from replacing zero or more free occurrences of α with β in $\phi(\alpha)$.

- All QML-instances of the S5-schemas are SQML-axioms:

$$\Box(\phi \rightarrow \psi) \rightarrow (\Box \phi \rightarrow \Box \psi) \tag{K}$$

$$\Box \phi \rightarrow \phi \tag{T}$$

$$\Diamond \Box \phi \rightarrow \Box \phi \tag{S5}$$

Remark. ‘QML-instance’ is defined the same as ‘PC-instance’, replacing ‘PC’ with ‘QML’.

Warning. In (II), $\phi(\beta)$ need not be $(\phi(\alpha))(\beta/\alpha)$.

H.IV.2. Some controversial theorems

Adding the (relatively) uncontroversial PL- and PC-axioms and rules for connectives, quantifiers and $=$ to S5, or even the (relatively) uncontroversial K-axioms and rules for \Box , (and extending the schemas) generates some highly controversial theorems, e.g.:

The necessity of existence: $\vdash_{\text{SQML}} \Box \forall \alpha \Box \exists \beta (\alpha = \beta)$

Question. Does the analogue of this theorem hold true in English? i.e. Is it necessarily the case that everything necessarily exists (in the sense of being identical to something)?