
127: Lecture notes HT20. Week 6.

H. Quantified Modal Logic (QML)

H.I. Syntax (LfP 9.1)

H.I.1. Primitive symbols

We add a 2 to the syntax of PC with =.

Primitive vocabulary of QML: parentheses, and the following:

• connectives/quantifier: Ñ,„,2, @
• variables: x, y, . . . (with or without numerical subscripts)

• n-place predicates F,G, . . . (with or without numerical subscripts), for each n ą 0.

• binary predicate: “

• individual constants (names): a, b, . . . (with or without numerical subscripts)

Remark. No 0-place predicates, i.e. sentence letters.

H.I.2. Complex expressions

Define QML-term and QML-wff just as in PC with =, adding a clause for 2.

Definition of a QML-term:

• If α is a variable or an individual constant, α is a term.

Definition of a QML-wff:

• If Πn is an n-place predicate and α1, . . . , αn are terms, Πnα1, . . . , αn is a wff.

• If α and β are terms, then α “ β is a wff.

• If φ and ψ are wffs, and α is a variable, „φ, pφÑ ψq, 2φ and @αφ are wffs.

Remarks.

• The usual ‘unofficial’ connectives are introduced in the usual way.

• Free and bound variable occurrences are defined in the same way as before.

Worked Example. Dy2y “ x is a QML-wff (with the x occurring free, and the y bound).

H.I.3. Symbolization

Worked Example. Disambiguate the following by giving two QML-symbolizations:

(1) Every Polish logician is necessarily a logician

Remark. A QML-wff is said to be de re if it has a subformula of the form 2φpαq in which
the variable α occurs freely; otherwise it is de dicto.

39

127: Lecture notes HT20. Week 6.

H.II. Semantics: SQML (LfP 9.3)

H.II.1. SQML-models

Let’s start with a simple—constant domain—semantics for QML.

Definition of a SQML-model (LfP 230): A SQML-model is a triple xW ,D ,I y:

• W is a non-empty set (‘the set of worlds’)

• D is a non-empty set (‘domain’)

• I is a function such that: (‘interpretation function’)

– I pαq P D for each constant α

– I pΠnq is a set of n` 1-tuples of the form xu1, . . . , un, wy, where u1, . . . un are
members of D and w P W , for each n-place predicate Πn

Note. No accessibility relation, R.

H.II.2. Intensions and Extensions

I pΠnq tells us which n-tuples of possibilia satisfy which predicates in which worlds.

• Recall that a (non-modal) PC-model M “ xD ,I y assigns extensions to predicates:

– e.g. for unary F , I pF q is a set of members of D

– Fa is true in M iff I paq P I pF q.

• Similarly a SQML-model M “ xW ,D ,I y assigns ‘intensions’ to predicates:

– e.g. for unary F , I pF q is a set of pairs xd, wy with d P D and w P W .

– Fa is true at w in M iff xI paq, wy P I pF q.

We can re-package the information from an intention in terms of w-extensions:

Definition of a w-extension: given a SQML-model M “ xW ,D ,I y, the extension
of an n-place predicate Πn at world w—in symbols: IwpΠ

nq—is defined as follows:

IwpΠ
n
q “ txu1, . . . , uny : xu1, . . . , un, wy P I pΠn

qu

Remark. All the w-extensions for w P W uniquely determine the intension and vice versa.

H.II.3. SQML-models vs. PC-models

SQML-models generalize PC-models much as SMPL-models generalize PL-models:

Meaning in PL/PC Meaning in SMPL/SQML
Sentence letter P extension intension

i.e. truth-value i.e. extension at w, for each w P W
Unary predicate F extension intension

i.e. set i.e. extension at w, for each w P W

40

127: Lecture notes HT20. Week 6.

H.II.4. Term denotations

Variable assignments, and term denotations are defined as in PC:

Definition of term denotation: Let M “ xW ,D ,I y be an SQML-model:

• An assignment g for M is a function that maps each variable to a member of D .

• For term α, we define its denotation in M relative to assignment g:

rαsM ,g “

#

I pαq if α is a constant

gpαq if α is a variable

Remark. The variant assignment gαd is defined as before.

H.II.5. Valuations

Definition of valuation (for SQML): The valuation function, VM ,g, for a SQML-
model M “ xW ,D ,I y and variable assignment g is the unique function that assigns
0 or 1 to each wff at each world and satisfies the following conditions:

Atomic formulas : for terms: α, β, α1, . . . αn, and n-ary predicate, Πn:

• VM ,gpα “ β, wq “ 1 iff rαsM ,g “ rβsM ,g

• VM ,gpΠ
nα1, . . . , αn, wq “ 1 iff xrα1sM ,g, . . . , rαnsM ,g, wy P I pΠnq

Connectives : for formulas φ and ψ:

• VM ,gpφÑ ψ,wq “ 1 iff VM ,gpφ,wq “ 0 or VM ,gpψ,wq “ 1

• VM ,gp„φ,wq “ 1 iff VM ,gpφ,wq “ 0

Modal operators: for formula φ:

• VM ,gp2φ,wq “ 1 iff, for every v P W , VM ,gpφ, vq “ 1

Quantifiers: for formula φ and variable α:

• VM ,gp@αφ,wq “ 1 iff, for every d P D , VM ,gαd
pφ,wq “ 1

Remark. The clause for atomic formulas may be reformulated in terms of w-extensions:

• VM ,gpΠα1, . . . , αn, wq “ 1 iff xrα1sM ,g, . . . rαnsM ,gy P IwpΠq

H.II.6. Validity (LfP 231)

SQML-validity is truth at every world of, and every assignment for, every SQML-model.

Worked Example. Show that:

1. (SQML 2@xpPx^ LxÑ Lxq

2. *SQML @xpPx^ LxÑ 2Lxq.

41

127: Lecture notes HT20. Week 6.

H.III. Axiomatic proofs in PC (LfP 4.4)

To start with, let’s extend axiomatic proof to PC.

H.III.1. Proof in PC

As in PL, a proof of a wff φ from a set of wffs Γ is a finite sequence of wffs terminating in
φ each of which is either an axiom, a member of Γ, or follows from earlier members of the
sequence by the application of a rule—when there is such a proof, we write Γ $PC φ.

Warning. Except when otherwise stated—e.g. for the proof of completeness—this is always
the way we define an axiomatic proof from assumptions.

Axiomatic system for PC (LfP 99)

• Rules : All PC-instances of (MP) and (UG) are PC-rules:

φÑ ψ φ
MP

ψ

φ
UG

@αφ

where in UG α is a variable.

• Axioms : All PC-instances of the PL-schemas are PC-axioms:

φÑ pψ Ñ φq (PL1)

pφÑ pψ Ñ χqq Ñ ppφÑ ψq Ñ pφÑ χqq (PL2)

p„ψ Ñ „φq Ñ pp„ψ Ñ φq Ñ ψq (PL3)

• All PC-instances of (PC1) and (PC2) that meet the side-conditions specified below
are PC-axioms:

@αφÑ φpβ{αq (PC1)

@αpφÑ ψq Ñ pφÑ @αψq (PC2)

Definition of a PC-instance. A PC-instance of a schema is the result of uniformly
replacing each schematic formula letter φ, ψ, . . . with a PC-wff, and each schematic
term α, β, . . . with a PC-term.

Side-conditions on (PC1) and (PC2)

• (PC1) is subject to the constraint that α is a variable, and φpβ{αq results from φ
by correct substitution of β for α (see below).

• (PC2) is subject to the constraint that α is a variable that does not occur freely
in φ.

42

127: Lecture notes HT20. Week 6.

H.III.2. Correct substitution

Unchecked, (PC1) generates non-valid instances, e.g. *PC @xDyRxy Ñ DyRyy.

We need to ensure that the variable substituted for x is not unintentionally bound by other
quantifiers.

Definition of correct substitution

• Say that β is substitutable for α in φ if α does not occur free in any subformula
of φ beginning with @β.

• When β is substitutable for α in φ, the formula which results from φ by correct
substitution of β for α—in symbols: φpβ{αq—is the formula that results from
replacing all and only free occurrences of α in φ with β.

Worked Example. Compute: (i) p@yRyxqpz{xq, (ii) p@yRyxqpx{yq, (iii) p@yRyxqpy{xq.

Remark. This amounts to Sider’s definition, LfP 100—see also Exercise Sheet 6.

H.III.3. Abbreviating proofs in PC

As in MPL-proofs, we often abbreviate proofs by helping ourselves to PC-instances of the
meta-rule PL.

PL: (LfP101) Suppose φ1 Ñ pφ2 Ñ ¨ ¨ ¨ pφn Ñ ψq is an PC-tautology. Then we help
ourselves to the following meta-rule in abbreviated proofs:

φ1 . . . φn
PL

ψ

Worked Example. Construct an abbreviated proof to show that:

$PC @xpFx^Gxq Ñ @xFx

H.III.4. Adequacy

When Γ is a set of PC-sentences and φ a PC-sentence (none of which contain free variables).

Soundness and completeness (LfP 105): Γ $PC φ iff Γ (PC φ.

43

127: Lecture notes HT20. Week 6.

H.IV. Axiomatic proofs in SQML (LfP 9.7)

H.IV.1. Proofs in SQML

Axiomatic system for SQML (LfP 249–50)

• Rules: All QML-instances of MP, UG and NEC (where, in UG, α is a variable):

φÑ ψ φ
MP

ψ

φ
UG

@αφ

φ
NEC2φ

• Axioms: All QML-instances of the PL-schemas are SQML-axioms:

φÑ pψ Ñ φq (PL1)

pφÑ pψ Ñ χqq Ñ ppφÑ ψq Ñ pφÑ χqq (PL2)

p„ψ Ñ „φq Ñ pp„ψ Ñ φq Ñ ψq (PL3)

• All QML-instances of PC-schemas meeting the side-conditions are SQML-axioms:

@αφÑ φpβ{αq (PC1)

@αpφÑ ψq Ñ pφÑ @αψq (PC2)

• All QML-instances of (RX) and (II) are SQML-axioms:

α “ α (RX)

α “ β Ñ pφpαq Ñ φpβqq (II)

where, in (II), β is substitutable for α and φpβq results from replacing zero or more free
occurrences of α with β in φpαq.

• All QML-instances of the S5-schemas are SQML-axioms:

2pφÑ ψq Ñ p2φÑ 2ψq (K)

2φÑ φ (T)

32φÑ 2φ (S5)

Remark. ‘QML-instance’ is defined the same as ‘PC-instance’, replacing ‘PC’ with ‘QML’.

Warning. In (II), φpβq need not be pφpαqqpβ{αq.

H.IV.2. Some controversial theorems

Adding the (relatively) uncontroversial PL- and PC-axioms and rules for connectives,
quantifiers and = to S5, or even the (relatively) uncontroversial K-axioms and rules for 2,
(and extending the schemas) generates some highly controversial theorems, e.g.:

The necessity of existence: $SQML 2@α2Dβpα “ βq

Question. Does the analogue of this theorem hold true in English? i.e. Is it necessarily
the case that everything necessarily exists (in the sense of being identical to something)?

44

