Caesar and Stipulation

J. P. Studd Oxford

Abstractionism 2 UConn, 12th August 2023 II The Caesar probler

III. A stipulative solution – two motivations

IV. Two objections

Objections

The Caesar problem

Might нр define number terms? Frege objects:

... our proposed definition ... does not provide for all cases. It will not, for instance, decide for us whether [Julius Caesar] is the same as [the number of Xs]... Naturally no one is going to confuse [Caesar] with [the number of Xs]; but that is no thanks to our definition of [number]. That says nothing as to whether the proposition ['#X = q'] should be affirmed or denied, except for the one case where *q* is given in the form of [#Y]. (Grundlagen, §66)

- HP stipulates content for unmixed contexts, i.e. '#X = #Y'
- 'says nothing' about mixed contexts, e.g.

$$#X = Caesar$$
 $#X = †Y$

(or other atomic contexts, e.g. '#X is Roman')

Introduction

Problem needs unpicking – but if 'Caesar questions' need deciding, why not supplement HP?

Grundgesetze: are truth-values value-ranges?

– Frege stipulates, in effect, $T = \{T\}$ and $F = \{F\}$

Grundlagen: are numbers Romans? are directions nations?

- Dummett (1978): 'direct stipulation' 'straightforward'
- piecemeal stipulation not hugely popular:

'Plainly, Frege is not here offering a solution to the Caesar problem: A piecemeal 'solution' is not a solution to the problem but a recipe for side-stepping it.' (Heck 2005, n. 17)

(rare exception: Linnebo, 2018)

Objection #1 | wrong answers

Macbride – stipulation may conflict with 'antecedent facts':

Suppose that Caesar leads a double life. Suppose that in addition to leading his material existence Caesar is also a number. In that case the stipulation that sentences that say Caesar is a number are all false cannot succeed. For some of these sentences will be true and true sentences cannot be stipulated to be false. ... Stipulation cannot suffice as a basis for determining that Caesar is no number. (2006, 192)

Objection #2 | incoherence

Hale & Wright – piecemeal stipulations risk incoherence:

Grundgesetze: stipulate $a = \{a\}$

- incoherent

... before we can safely stipulate that some object ... is a certain extension, we need an assurance that it is not (behind our back, as it were) some other extension—else our new stipulation might conflict with the original stipulation of identity-conditions ... A solution to the Caesar Problem is thus presupposed, and cannot be provided, by generalizing the kind of stipulation Frege envisages for truth-values. (2001, n. 8)

I. Introduction

II. The Caesar problem

III. A stipulative solution – two motivations

IV. Two objections

Abstraction – a metasemantic sketch

To get clear on the problem:

how abstraction works - standard version

- phase 1: if need be, add term-forming operators (e.g. #)
- phase 2: stipulate sentential contents for unmixed contexts (e.g. #X = #Y)
- phase 3: subsentential semantic values selected that compositionally determine the stipulated sentential content.
- phase 2: abstraction principle 'unmixed postulate':

$$\forall x, y \in \mathcal{D}_{\sigma}$$
, tfae: $\sigma x = \sigma y$; $x \sim_{\sigma:\sigma} y$

- values of x, y: 'specifications'
- $\sim_{\sigma:\sigma}$: 'unity relation'

Caesar problem

Caesar – 'more heads than the hydra' (Heck 2016, n. 12)

- focus on a semantic aspect
- attempt to abstract via нр inconsistent triad:
- C1 the attempt determines a <u>unique referent</u> for #*X* (and leaves the referent of 'Caesar' unchanged)
- C2 the attempt confers the <u>standard syntax/semantics</u> on the identity predicate
- C3 the attempt settles <u>no determinate truth-value</u> for '#X = Caesar'
- solution: well-motivated rejection of C1, C2, or C3

Two solutions – set aside

radical indeterminacy

(cf. Boccuni and Woods 2020)

- reference of '#X' radically indeterminate
- mixed contexts lack determinate truth-values

category mistake

(cf. Heck 1997)

- mixed contexts syntactically or semantically defective
- fully general, across-the-board versions overgenerate:

some Caesar questions need answers:

- (1) Is $\#X = 0_{\mathbb{N}}$? (2) Is $\#X \in \mathbb{N}$? (3) Is #X non-concrete?
- (1)–(3) need answers:
 - to explain how the natural numbers are given to us
 - to sustain a broadly platonist metaphysics

Two more solutions

additional desideratum – settle some Caesar questions

wholesale extraction: (Hale & Wright 2001, Rosen & Yablo 2020)

- content of mixed contexts 'extractable from' content of unmixed contexts
- 'latent content' in нр/background metaphysics
 - H&W: 'criterion of identity' for 'pure sortal'/categories
 - R&Y: 'real definition'/ essentialist metaphysics
- semantic value of # determined by нр alone

piecemeal stipulation:

(Linnebo 2018, Studd 2023)

- mixed contexts open to stipulation
- semantic value of # determined by HP + other stipulations
- indeterminacy reduced with additional stipulations

Motivations •000000

III. A stipulative solution – two motivations

IV. Two objections

13

Motivation #1 | why not?

- natural generalization of standard story:

how abstraction works - piecemeal version

- phase 1: if need be, add term-forming operators
- phase 2: stipulate sentential contents for unmixed [and mixed] contexts [or other atomic contexts]
- phase 3: subsentential semantic values selected that compositionally determine the stipulated sentential content.

$$\forall X, Y$$
, tfae: $\hat{\#}X = \hat{\#}Y$; X and Y are equinumerous

- why not also stipulate the following?

$$\forall X, Y$$
, tfae: $\#X \leq \#Y$; there is an injection $X \to Y$

$$\forall X, Y$$
, tfae: $\#X \leq \hat{\#}Y$; there is an injection $X \to Y$

$$\forall n \in \mathbb{N}, \forall Y$$
, tfae: $n \leq \#Y$; there is an injection $\{1, ..., n\} \to Y$

- why not also <u>mixed identity contexts?</u> (cf. Heck 1997)

$$\forall X, Y$$
, tfae: $\#X = \hat{\#}Y$; X and Y are equinumerous

$$\forall X, \forall n \in \mathbb{N}$$
, tfae: $\#X = n$; X and $\{1, ..., n\}$ are equinumerous

15

- in general, if we stipulate unmixed postulates:

$$\forall x, y \in \mathcal{D}_{\sigma}$$
, tfae: $\sigma x = \sigma y$; $x \sim_{\sigma:\sigma} y$

– perhaps also, e.g.:

$$\mathscr{I}_{\sigma}^{R}$$
 – 'instantiation relation'

 $\forall x \in \mathcal{D}_{\sigma}$, tfae: $R(\sigma x)$; $\mathscr{I}_{\sigma}^{R}(x)$

- why not also 'mixed postulates'?

$$\forall x \in \mathcal{D}_{\sigma} \forall y \in \mathcal{D}_{\rho}$$
, tfae: $\sigma x = \rho y$; $x \sim_{\sigma:\rho} y$

$$\forall x \in \mathcal{D}_{\sigma} \forall q \in \mathcal{D}_{q}$$
, tfae: $\sigma x = q$; $x \sim_{\sigma:q} q$

- e.g., for Caesar:

For any *X* and Roman *q*, tfae: #X = q; \bot

Motivation #2 | more freedom

Parable – imagine a community patch up BLV:

$$\forall X, Y$$
, tfae: $\{X\} = \{Y\}$; X and Y coextensive or both BIG

$$\forall X, x$$
, tfae: $x \in \{X\}$; X small and Xx

- set: $\{X\}$ for small X (suitable 'BIG'; small := non-BIG)
- familiar issue: sets lack absolute complements

Response: more abstracts! (cf. e.g. Forster 2008)

$$\forall X, Y$$
, tfae: $\{X\}^{\mathbb{C}} = \{Y\}^{\mathbb{C}}$; X and Y coextensive or both BIG

$$\forall X, x$$
, tfae: $x \in \{X\}^{\mathbb{C}}$; X small and $\neg Xx$

$$\forall X, Y, \text{ tfae: } \{X\} = \{Y\}^{\complement}; \quad \bot$$

– complemented or c-set: $\{X\}$ or $\{X\}^{\mathbb{C}}$ for small X

Objections

$$0 := \{\Lambda\} \qquad \{X\} \vee \{Y\} := \{X \cup Y\} \qquad \{X\} \wedge \{Y\} := \{X \cap Y\}$$

$$1 := \{\Lambda\}^{\mathbb{C}} \qquad \{X\}^{\mathbb{C}} \vee \{Y\}^{\mathbb{C}} := \{X \cap Y\}^{\mathbb{C}} \qquad \{X\}^{\mathbb{C}} \wedge \{Y\}^{\mathbb{C}} := \{X \cup Y\}^{\mathbb{C}}$$

$$\neg \{X\} := \{X\}^{\mathbb{C}} \qquad \{X\} \vee \{Y\}^{\mathbb{C}} := \{X^{c} \cap Y\}^{\mathbb{C}} \qquad \{X\} \wedge \{Y\}^{\mathbb{C}} := \{X \cap Y^{c}\}$$

$$\neg \{X\}^{\mathbb{C}} := \{X\} \qquad \{X\}^{\mathbb{C}} \vee \{Y\} := \{X \cap Y^{c}\}^{\mathbb{C}} \qquad \{X\}^{\mathbb{C}} \wedge \{Y\} := \{X^{c} \cap Y\}$$

$$\Lambda := \lambda x. x \neq x; \qquad X^{c} := \lambda x. \neg Xx; \qquad X \cup Y := \lambda x(Xx \vee Yx), \quad \text{etc.}$$

- but: can we thus introduce c-sets?

Introduction

- piecemeal stipulation: <u>yes</u> (given suitable 'BIG')
- wholesale extraction: no (or so I will argue)
- moral: wholesale extraction curtails mathematical freedom

J. P. Studd Caesar and stipulation 17

Objections

- why does wholesale extraction curtail freedom?

NV If σ - and ρ -abstracts introduced by <u>notational variants</u> of same abstraction principle, σ and ρ have same semantic value:

therefore, for any
$$x \in \mathcal{D}_{\sigma}$$
, $\sigma x = \rho x$

- Wholesale: endorse NV
 - by **NV** $\{X\} = \{X\}^{\mathbb{C}}$
 - not free to introduce csets as above. e.g.:

$$\emptyset\not\in\emptyset$$

$$\emptyset \in \emptyset^{\mathbb{C}}$$

$$\emptyset = \emptyset^{\mathbb{C}}$$

- Piecemeal: reject NV
 - meaning of σ not just determined by unmixed postulates
 - restore coherence free to deny $\{X\} = \{X\}^{\mathbb{C}}$

Motivations

II. The Caesar probler

III. A stipulative solution – two motivations

IV. Two objections

Objection #1 | wrong answers

MacBride: might we stipulate the wrong answer?

For any *X* and any Roman *q*, tfae:

#X = q; q is a dictator of the Roman Republic and the class of dictators succeeding q is equinumerous with X

Or again consider Shapiro's ср alongside нр.

$$\forall X, Y \subseteq \mathbb{Q}$$
, tfae:
 $\sup X = \sup Y$; X and Y have same rational upper bounds

– Community 1 identify their #- and sup-abstracts:

```
\forall X, \forall Y \subseteq \mathbb{O}, tfae:
  \#X = \sup Y; Y has same rational upper bounds as \{0_{\mathbb{Q}}, \dots, n_{\mathbb{Q}}\},
                          and X is equinumerous with \{0_0, ..., n_0\} \setminus \{0_0\}.
```

- Community 2 distinguish theirs:

```
\forall X, \forall Y \subseteq \mathbb{Q}, tfae \#X = \sup Y; \perp
```

– can both be right?

- reply: sort of - depends what you mean by 'right'

To clarify – consider an 'unmixed' case:

– Community 1 lay down нр:

Introduction

$$\forall X, Y$$
, tfae: $\#X = \#Y$; X and Y are equinumerous

- Community 2 take a pre-Cantorian stance:

$$\forall X, Y$$
, tfae: $\#X = \#Y$; X and Y are equinumerous or both infinite

– can <u>both</u> be right?

Success: do both abstraction attempts succeed (individually)? – yes, both introduce cardinal-like abstracts

Reduction: are these abstracts the <u>familiar</u> cardinals?

- the stipulations accord different referents to #: #¹ and #²
- at most one is #*, the 'intended' cardinality-operator:

$$\#^*X :=$$
the cardinality of X

Similar considerations apply in 'mixed cases':

- Community 1, recall, 'identify' their #- and sup-abstracts
- Community 2 distinguish theirs

Success: do the abstraction attempts succeed?

- yes, both introduce cardinal-like and real-like abstracts

Reduction: are these abstracts the familiar cardinals and reals?

- as before, stipulations introduce #1/#2 and sup1/sup2
- in at most one case, $\#^i = \#^*$ and $\sup^i = \sup^*$ (i = 1 or 2)

Objections

Moral: reduction, not success, hostage to 'antecedent' facts:

For any *X* and Roman *q*, tfae: #X = q; \bot

- Caesar leads a double life: may still introduce (non-Roman) cardinal-*like* abstracts
- sane case: combined with other mixed postulates may yet suffice to pick out #*

Objection #2 | incoherence

Hale and Wright: piecemeal stipulation risks incoherence

Reply:

- abstraction risks incoherence: bad company
- as in unmixed case, seek success criterion (focus: my favourite response to bad company)

– piecemeal abstraction – patchwork of unity relations:

$$\forall x, y \in \mathcal{D}_{\sigma}$$
, tfae: $\sigma x = \sigma y$; $x \sim_{\sigma:\sigma} y$

$$\forall x \in \mathcal{D}_{\sigma} \forall y \in \mathcal{D}_{\rho}$$
, tfae: $\sigma x = \rho y$; $x \sim_{\sigma:\rho} y$

$$\forall x \in \mathcal{D}_{\sigma} \forall q \in \mathcal{D}_{q}$$
, tfae: $\sigma x = q$; $x \sim_{\sigma:q} q$

$$\forall x \in \mathcal{D}_{\sigma}$$
, tfae: $R(\sigma x)$; $\mathscr{I}_{\sigma}^{R}(x)$

- necessary condition for success:
 - $\sim_{\sigma:\sigma}$, $\sim_{\sigma:\rho}$, $\sim_{\sigma:q}$, induce global unity relation: \sim
 - \mathscr{I}_{σ}^{R} , \mathscr{I}_{ρ}^{R} , etc. induce global instantiation relation: \mathscr{I}^{R}

Congruence: \sim an equivalence relation, respected by each \mathscr{I}^R

Is **Congruence** sufficient for success?

Orthodox view: clearly not!

- BLV meets Congruence
- abstraction is <u>impredicative/static</u>: abstracts introduced must fall within pre-abstraction domain

My preferred view: yes

- abstraction is <u>predicative/dynamic</u>: abstracts introduced may fall outside pre-abstraction domain
- dynamic BLV is unproblematic
- model-theoretic safety result: if an abstraction attempt meets Congruence, then some interpretation extends the pre-abstraction interpretation according to its postulates

What about Caesar?

For any *X* and any Roman *q*, tfae:

#X = q; q is a dictator of the Roman Republic and the class of dictators succeeding q is equinumerous with X

Success: could this succeed?

- first thought: why not (modulo coherence)?
 - $\#^2 X := \begin{cases} \text{the dictator whose successors are equinumerous with } X \\ \text{the number of } X \text{s if no such Roman} \end{cases}$
- second thought: contingency threatens coherence