Contingentist sets as potentialist properties

J. P. Studd Oxford

Challenging the Infinite 11th March 2024

Contingentist sets

•0000000

Contingentism

- is existence contingent or necessary?

Necessitism [NNE-ism]: existence is necessary

(NNE)

 $\Box \forall x \Box \exists y (y = x)$

Contingentism: existence is contingent

- motivation: apparently incompossible individuals

me v. Tom

WWI v. GEP

$$-\operatorname{incmp}(x,y) := \Diamond \operatorname{ind}(x) \wedge \Diamond \operatorname{ind}(y) \wedge \neg \Diamond (E!x \wedge E!y)$$

- incompossibles motivate 'strong contingentism':

[sc-ism]: there could always be another individual

(sc)

 $\Box \forall xx \Diamond \exists y (ind(y) \land y \not\prec xx)$

Sets of possibilia | semantics 1

sc-ism: – semantic reflection motivates sets of possibilia:

Q: why is $\Diamond \exists x \Diamond \exists y \text{ incmp}(x, y) \text{ true}$? (cf. Peacocke, Gupta)

- A: because there is a suitable assignment, e.g.

$$\sigma: x \mapsto \text{me} \quad y \mapsto \text{Tom}$$

Contingentist sets

0000000

Sets of possibilia | semantics 2

– further motivation:

Contingentist sets

00000000

Q: how can we 'make sense' of the Goodman-Fritz sentence?

(GF) Most possible individuals are never born

- A: apply GQ semantics: e.g.

 $|D \cap N| > |D - N|$ D := set of possible individuals

N := set of never-borns

(D – set of ALL possible individuals)

Sets of possibilia | metaphysics

- semantic reflection: motivates σ , D
- **but:** assuming sc-ism, there are no such sets
- because: ontological dependence

[OD-set]: necessarily, a set exists only if its elements exist

- assuming sc-ism:

D exists $\Rightarrow_{OD\text{-set}}$ all possible individuals exist $\Rightarrow \bot$ σ exists $\Rightarrow_{\text{ZEIJ}} \{\text{me, Tom}\}$ exists $\Rightarrow_{\text{OD-set}}$ me and Tom exist $\Rightarrow \bot$

- what to do?
 - non-standard semantics avoid σ , D, etc.
 - bad metaphysics reject [OD-set]
 - retain standard semantics without bad metaphysics?

Contingentist sets

00000000

Strategy #1 | sets of proxy-possibilia

Ersatzism:

Contingentist sets

00000000

(e.g. Plantinga, Jager, ...)

- possible individual, $x \mapsto x^*$, actual proxy (e.g. being x)
- set of possibilia \mapsto set of proxies e.g.:

$$\sigma^*: x \mapsto \mathrm{me}^*, y \mapsto \mathrm{Tom}^*$$

 D^* = set of proxy possible individuals

– bad metaphysics?

- non-standard semantics? right TCs, wrong subject?
 - sc-ist: 'I exist contingently'
 - Proxy semantics: being-me is contingently exemplified

Strategy #2 | proxy-sets of possibilia

- Gupta hints at a different approach (1978, 465):
 - ... even if our present conception of sets is such that on it the set {Tom, You} does not exist there does not appear to be any conceptual difficulty in introducing another conception of sets according to which such sets do exist.
- my aim: provide such a conception of 'set'

– reductive proposal:

(cf. Bealer: 'L-determinate') – proxy-sets or psets:

 pset – set-like or 'stable' property (silent 'p')

• pmember: $x \in p$ understood as $\Diamond(x \text{ has } p)$

- example: pset of possible individuals:

 $D^* = being \ an \ individual \ me \in D^*$ $Tom \in D^*$

- plan:

Contingentist sets

0000000

- what is the underlying conception of properties?
- what makes psets setlike?
- what about non-standardness/badness objections?

I. Contingentism and sets of possibilia

II. Potentialism and properties

III. Psets

IV. Objections and replies

Potentialism | properties

– informally, properties are introduced stagewise:

```
- at each stage:
```

Comprehension: any $\phi(x)$ defines a concept [type $e \rightarrow t$]

Plenitude: each concept is, at every later stage, nominalized as a property [type *e*]

Priority: each property nominalizes some concept available at an earlier stage

Individuals: individuals are available at every stage

Intensionality: necessarily coextensive properties (concepts) are identical

- aim for this section:

- motivate a modal property theory мрт
- to start with: using an extensional metatheory

Properties $|\langle W, d_{\alpha} \rangle$ -hierarchy

- iterative sets: stage - $V_{\alpha}(U)$

$$U := set of urelements$$

$$V_{\alpha}(U) := U \cup \bigcup_{\beta < \alpha} \mathbf{P} V_{\beta}(U)$$

- iterative properties: stage – $\langle W, d_{\alpha} \rangle$

dom. of w

W :=the set of worlds

$$d_{\alpha} \colon w \mapsto d_{\alpha}(w)$$

$$\langle W, d \rangle := initial frame$$

$$d_{\alpha}(w) := d(w) \cup \bigcup_{\beta < \alpha} \pi d_{\beta}$$

$$\pi d := \{p : p \sqsubseteq d\}$$

$$p \sqsubseteq d := p \colon w \mapsto p(w) \subseteq d(w)$$

мрт | Kripke semantics

Contingentist sets

$$S ::= \pi x \mid x \eta y \mid Xx \mid x = y \mid \neg S \mid S \rightarrow S \mid \forall xS \mid \Box S \mid \mathbb{G}S \mid \mathbb{H}S$$
- boldface: x is x or X

outer dom.

$$D := \bigcup_{w,\alpha} d_{\alpha}(w)$$

properties nominalized at α

$$P_{\alpha} := \bigcup_{\beta < \alpha} \pi d_{\beta}$$

- formulas evaluated at $\langle w, \alpha \rangle$, $w \in W$, $\alpha \in On$

- a, p, Q ∈ D:

- $w, \alpha \models \pi p \text{ iff } p \in P_{\alpha}$
- $w, \alpha \models a \eta p \text{ iff } p \in P_{\alpha} \text{ and } a \in p(w)$
- $w, \alpha \models Qa \text{ iff } Q \in \pi d_{\alpha} \text{ and } a \in Q(w)$

'a is a property'

'a exemplifies p'

мрт | modal operators / modalization

• $w, \alpha \models \mathbb{G}\psi \text{ iff } \forall \beta > \alpha : w, \beta \models \psi$

↑-operator

• $w, \alpha \models \mathbb{H}\psi \text{ iff } \forall \beta < \alpha : w, \beta \models \psi$

↓-operator ⇔-operator

- $w, \alpha \models \Box \psi \text{ iff } \forall v \in W : v, \alpha \models \psi$
- $w, \alpha \models \mathbb{A}\phi \text{ iff } \forall \beta \in \text{On: } w, \beta \models \phi$

$$\mathbb{A}\phi := \mathbb{H}\phi \wedge \phi \wedge \mathbb{G}\phi$$

• $w, \alpha \models \Box \phi$ iff $\forall \langle u, \beta \rangle \in W \times \text{On: } u, \beta \models \phi$

 $\Box := \mathbb{A} \Box$

- dual operators: $\mathbb{E} := \neg \mathbb{A} \neg$, $\mathbb{P} := \neg \mathbb{H} \neg$, etc.
- w, α : $\forall x \text{ ranges over } d_{\alpha}(w)$, $\forall X \text{ over } \pi d_{\alpha}$
- to speak of whole hierarchy: ⋄-modalize
- $\cdot \diamond : \forall \mapsto \boxdot \forall, \exists \mapsto \diamond \exists, \text{ atomic } \Phi \mapsto \diamond \Phi$
 - $w, \alpha \models (\forall x \phi(x))^{\diamondsuit}$ iff, for every $a \in D$, $w, \alpha \models (\phi(a))^{\diamondsuit}$

мрт | modal property theory

MPT = free second-order modal logic + \cdots

```
COMP \exists X \Box \forall x (Xx \leftrightarrow \phi)
PLEN_{\pi} E:X \to G\exists y \Box (y \equiv X) \equiv: coextensive property/concept
  PRI_{\pi} \quad \pi y \to \mathbb{P} \exists X \Box (y \equiv X)
 IND_{\pi} ind x \to AE!x
                                                                                ind x := E!x \land \neg \pi x
  INT_{\pi} E!x \land \Box(x \equiv y) \rightarrow x = y
```

- sound: MPT $\vdash \phi \Rightarrow w, \alpha \models \phi$
- can we take Kripke semantics seriously?
 - yes! there is an intended hierarchy, $\langle W^*, d_{\alpha}^* \rangle$
 - W^* and d_{α}^* are psets

Objections

I. Contingentism and sets of possibilia

II. Potentialism and properties

III. Psets

Contingentist sets

IV. Objections and replies

Psets | stable, setlike properties

- pset := property that is 'stable'
 - $p \in P_{\alpha}$ is **stable** if for $\forall a \in d_{\alpha}(w) \cap d_{\alpha}(u)$: $a \in p(w)$ iff $a \in p(u)$
 - 'pset' $-\pi_* v := \pi v \land \boxdot \forall x (\Diamond x \eta v \rightarrow x \eta v)$
- thm: мрт interprets su := zfu inf repl + transitive cont.
 - define ·^u like ⋄-modalization, except:

$$(\mathcal{L}x)^{\boldsymbol{u}} := \mathbb{E}\pi_* x \qquad (x \in y)^{\boldsymbol{u}} := \Diamond x \, \eta \, y \wedge \mathbb{E}\pi_* y$$

- $su \vdash \phi$ implies MPT $\vdash \phi^u$
- **application:** incompossible assignments
- recall σ : x → me; y → Tom su + set of variables $\vdash \forall a \forall b \ (\exists \sigma : x \mapsto a; y \mapsto b)$ MPT + pset of variables $\vdash \boxdot \forall a \boxdot \forall b \ (\exists \sigma : x \mapsto a; y \mapsto b)^u$

Psets | intended Kripke structures

- the 'intended' Kripke semantics goes beyond su (or ZFU):
- intended initial frame: $\langle W^*, d^* \rangle$

 $W^* = \{w : w \text{ is a world}\}$ $d^* : w \mapsto \{x : x \text{ is an individual at } w\}$

- Kripke semantics in мрт:
 - define @w (cf. Fine, Reinhardt) and @ α (cf. Studd)
 - extend $(\cdot)^u$:

$$(w \text{ is a world})^{u} := \diamondsuit@w$$

 $(x \text{ is an individual at } w)^{u} := \Diamond (\text{ind } x \land @w)$

- **prop:** MPT $\vdash (\forall \alpha \in On : \langle W^*, d_{\alpha}^* \rangle \text{ exists})^u$
- **thm:** $\langle W^*, d_{\alpha}^* \rangle$ -hierarchy captures intended interpretation:

$$@w,@\alpha \vdash_{\mathsf{MPT}} \phi \leftrightarrow (w,\alpha \models \phi)^{u}$$

Psets | making sense of NNE-ist discourse

- MPT: constant-domain structures exist too e.g.: $(\langle W^*, w^*, D^* \rangle \models \text{NNE})^{u}$ w^* – actual world, $(D^* = \bigcup_{w} d^*(w))^{u}$
- is $\langle W^*, w^*, D^* \rangle$ intended?

sc-ist - no!

NNE-ist - yes!

- sc-ist: unintended but useful:

```
NNE-ist: '\phi!' sc-ist: 'oh! – you mean: (\langle W^*, w^*, D^* \rangle \models \phi)^{u}'
```

- NNE-ist: 'most possible individuals are never born'
- sc-ist: you mean:

 $((\langle W^*, w^*, D^* \rangle \models \text{most possible individuals are never born})^{u})$

$$-i.e. (|D^* \cap N^*| > |D^* - N^*|)^u$$

Objections

•ooo

I. Contingentism and sets of possibilia

II. Potentialism and properties

III. Psets

IV. Objections and replies

Bad metaphysics? | ontological dependence

- bad metaphysics?

[OD-set]: a set exists only if its members exist

TRUE

[OD-pset]: a pset exists only if its pmembers exist

FALSE

- OD-pset stands/falls with OD-pty:

[OD-pty]: a property exists only if its possible instantiators do

- clear failures: e.g. being an individual
- controversial: **OD-pty** fails for 'quidditative properties' being me or being Tom exists (but Tom does not exist)
- reply: respectable conceptions make both
 - (i) **OD-set** hold

(ii) OD-pty fail (lots)

potentialist ontological dependence:

(cf. Priority)

[POD-set]: a set exists only if its plurality exists

[POD-pty]: a property exists only if its concept exists

– OD-set and OD-pty turn on:

[OD-plu]: a plurality exists only if its members exist

[OD-con]: a concept exists only if its possible instantiators do

- 'nothing over and above': OD-plu holds

(cf. Roberts)

- 'mere intensions':

(cf. 'minimalism')

- if $\phi(x, a_1, \dots, a_n)$ has a well-defined intension, a unique concept is necessarily coextensive with $\phi(x, a_1, ..., a_n)$
- COMP + INT $_{\pi}$ $\vdash \Box \forall X \Box \exists Y(Y = X)$
- assuming sc, OD-con fails

Objections

Change the sets, change the subject?

- non-standard semantics?
 - ersatz semantics: wrong subject matter
 - why think switching sets for psets does better?
- reply: important difference v. ersatzism
 - psets are proxy-sets of genuine possibilia e.g.

```
ersatz semantics: me^*, Tom^* \in D^*
```

pset semantics: me. Tom $\in D^*$

Vu nan cas arra

 $\forall x \text{ ranges over proxies} \quad \forall x \text{ ranges over possibilia}$