

Contingentist sets
oooooooo

Potentialist properties
ooooooo

Psets
ooooo

Objections
oooo

Contingentist sets as potentialist properties

J. P. Studd

Philosophy of Mathematics Seminar
2nd December 2024

Slides: <https://jamesstudd.net/csapp>

Contingentist sets
●oooooooo

Potentialist properties
oooooooo

Psets
ooooo

Objections
oooo

I. Contingentism and sets of possibilia

II. Potentialism and properties

III. Psets

IV. Objections and replies

Contingentism

- is existence contingent or necessary?

Necessitism [NNE-ism]: existence is necessary

$$(\text{NNE}) \quad \Box \forall x \Box \exists y (y = x)$$

Contingentism: existence is contingent

- **motivation:** apparently incompossible individuals

me v. Tom

WWI v. GEP

$$- \text{incmp}(x, y) := \Diamond \text{ind}(x) \wedge \Diamond \text{ind}(y) \wedge \neg \Diamond (E!x \wedge E!y)$$

- incompossibles motivate '**strong contingentism**':

[sc-ism]: there could always be another individual

(sc)

$$\Box \forall x x \Diamond \exists y (\text{ind}(y) \wedge y \not\sim x)$$

Sets of possibilia | semantics 1

sc-ism: – semantic reflection motivates sets of possibilia:

Q: why is $\Diamond\exists x\Diamond\exists y \text{incmp}(x,y)$ true? (cf. Peacocke, Gupta)

– **A:** because there is a suitable assignment, e.g.

$$\sigma : x \mapsto \text{me} \quad y \mapsto \text{Tom}$$

Sets of possibilia | semantics 2

– further motivation:

Q: how can we ‘make sense’ of the Goodman-Fritz sentence?

(GF) Most possible individuals are never born

– **A:** apply GQ semantics: e.g.

$$|D \cap N| > |D - N| \quad D := \text{set of possible individuals}$$
$$N := \text{set of never-borns}$$

(D – set of ALL possible individuals)

Sets of possibilia | metaphysics

- semantic reflection: motivates σ , D
- **but:** assuming sc-ism, there are no such sets
- because: **ontological dependence**

[OD-set]: necessarily, a set exists only if its elements exist

- assuming sc-ism:

D exists $\Rightarrow_{\text{OD-set}}$ all possible individuals exist $\Rightarrow \perp$

σ exists \Rightarrow_{ZFU} {me, Tom} exists $\Rightarrow_{\text{OD-set}}$ me and Tom exist $\Rightarrow \perp$

- what to do?

- **non-standard semantics** – avoid σ , D , etc.
- **bad metaphysics** – reject [OD-set]
- retain **standard semantics** without **bad metaphysics**?

Strategy #1 | sets of proxy-possibilia

Ersatzism:

(e.g. Plantinga, Jager, ...)

- possible individual, $x \mapsto x^*$, actual proxy (e.g. *being* x)
- set of possibilia \mapsto set of proxies – e.g.:

$$\sigma^* : x \mapsto \text{me}^*, y \mapsto \text{Tom}^*$$

D^* = set of proxy possible individuals

– bad metaphysics?

– non-standard semantics? – right TCS, wrong subject?

- sc-ist: ‘I exist contingently’
- Proxy semantics: *being-me* is contingently exemplified

Strategy #2 | proxy-sets of possibilia

- Gupta hints at a different approach (1978, 465):
...even if our present conception of sets is such that on it the set {Tom, You} does not exist there does not appear to be any conceptual difficulty in introducing another conception of sets according to which such sets *do* exist.
- **my aim:** provide such a conception of ‘set’

– reductive proposal:

– **proxy-sets or psets:** (cf. Bealer: ‘L-determinate’)

- pset – set-like or ‘stable’ attribute (silent ‘p’)
- pmember: $x \in p$ understood as $\Diamond(x \text{ exemplifies } p)$

– **example:** pset of possible individuals:

$D^* = \text{being an individual}$ $\text{me} \in D^*$ $\text{Tom} \in D^*$

– **plan:**

- what is the underlying conception of properties?
- what makes psets setlike?
- what about non-standardness/badness objections?

Contingentist sets
oooooooo

Potentialist properties
●oooooooo

Psets
ooooo

Objections
oooo

I. Contingentism and sets of possibilia

II. Potentialism and properties

III. Psets

IV. Objections and replies

Russell's paradox | properties and sets

Q: Which $\phi(x)$ specify a nominalized property or attribute?

$\overbrace{\hspace{10em}}$ type e $\overbrace{\hspace{10em}}$ type e

Naive A: any $\phi(x)$! $\overbrace{\hspace{10em}}^{e \rightarrow t}$ \equiv : 'coextensive'

- any $\phi(x)$ defines a property: $\exists X \square \forall x (Xx \leftrightarrow \phi(x))$
- any property is nominalized: $\forall X \exists y \square (y \equiv X)$... \perp !

- set case: $\underbrace{\exists xx \forall x (x < xx \leftrightarrow \phi)}_{P\text{-COMP}} + \underbrace{\forall xx \exists y (y \equiv xx)}_{\text{COLLAPSE}} \vdash \perp$

Potentialist A (set case): (e.g. Parsons, Linnebo)

- any $\phi(x)$ defines a plurality: $\exists xx \forall x (x < xx \leftrightarrow \phi)$
- any plurality potentially forms a set: $\forall xx \exists y (y \equiv xx)$
- is a similar move available for properties?

Potentialism | properties

– informally, properties are introduced stagewise:

– at each stage:

Comprehension: any $\phi(x)$ defines a property

Plenitude: each property is, at every later stage,
nominalized as an attribute

Priority: each attribute nominalizes some property
available at an earlier stage

Individuals: individuals are available at every stage

Intensionality: necessarily coextensive properties/attributes
are identical

– aim for this section:

- motivate a modal property theory – **MPT**
- to start with: using an extensional metatheory

Properties | $\langle W, d_\alpha \rangle$ -hierarchy

– **iterative sets**: “iteratively add all subsets”

$$U_0 := U \quad U_1 := U \cup \mathbf{P}U_0 \quad U_\alpha := U \cup \bigcup_{\beta < \alpha} \mathbf{P}U_\beta$$

– **iterative properties**: “iteratively add all subintensions”

- stage 0: $\langle W, d \rangle$ $W :=$ the set of worlds $d: w \mapsto d(w)$

- p is an **intension on $\langle W, d \rangle$** – or $p \sqsubseteq d$ – if:

$$p: w \mapsto p(w) \quad p(w) \subseteq d(w)$$

- powerset analogue – $\pi d := \{p : p \sqsubseteq d\}$

- stage 1: $\langle W, d_1 \rangle$ $d_1(w) := d(w) \cup \pi d$

- stage α : $\langle W, d_\alpha \rangle$ $d_\alpha(w) := d(w) \cup \bigcup_{\beta < \alpha} \pi d_\beta$

MPT | Kripke semantics

$$S ::= \pi x \mid x \eta y \mid Xx \mid x = y \mid \neg S \mid S \rightarrow S \mid \forall x S \mid \Box S \mid \text{GS} \mid \text{HS}$$

– boldface: x is x or X

– formulas evaluated at $\langle w, \alpha \rangle$, $w \in W, \alpha \in \text{On}$

- w, α : $\forall x$ ranges over $d_\alpha(w)$, $\forall X$ over πd_α

$$\begin{array}{c} \text{domain of } \forall x \\ \overbrace{d_\alpha(w) = d(w) \cup P_\alpha} \\ \text{properties nominalized at } \alpha \\ P_\alpha := \bigcup_{\beta < \alpha} \pi d_\beta \\ \text{outer dom.} \\ \overbrace{D := \bigcup_{w, \alpha} d_\alpha(w)} \end{array}$$

– $a, p, Q \in D$:

- $w, \alpha \models \pi p$ iff $p \in P_\alpha$ ‘ p is an attribute’
- $w, \alpha \models a \eta p$ iff $p \in P_\alpha$ and $a \in p(w)$ ‘ a exemplifies p ’
- $w, \alpha \models Qa$ iff $Q \in \pi d_\alpha$ and $a \in Q(w)$

MPT | modal operators / modalization

- $w, \alpha \models \mathbb{G}\psi$ iff $\forall \beta > \alpha: w, \beta \models \psi$ ↑-operator
- $w, \alpha \models \mathbb{H}\psi$ iff $\forall \beta < \alpha: w, \beta \models \psi$ ↓-operator
- $w, \alpha \models \Box\psi$ iff $\forall v \in W: v, \alpha \models \psi$ ↔-operator
- $w, \alpha \models \mathbb{A}\phi$ iff $\forall \beta \in \text{On}: w, \beta \models \phi$ $\mathbb{A}\phi := \mathbb{H}\phi \wedge \phi \wedge \mathbb{G}\phi$
- $w, \alpha \models \Box\phi$ iff $\forall \langle u, \beta \rangle \in W \times \text{On}: u, \beta \models \phi$ $\Box := \mathbb{A}\Box$
- dual operators: $\mathbb{E} := \neg \mathbb{A} \neg$, $\mathbb{P} := \neg \mathbb{H} \neg$, etc.

– to speak of whole hierarchy: **◊-modalize**

$\cdot \Diamond: \forall \mapsto \Box\forall, \exists \mapsto \Diamond\exists$, atomic $\Phi \mapsto \Diamond\Phi$

- $w, \alpha \models \forall x\phi(x)$ iff, for every $a \in d_\alpha(w)$, $w, \alpha \models \phi(a)$
- $w, \alpha \models (\forall x\phi(x))^\Diamond$ iff, for every $a \in D$, $w, \alpha \models (\phi(a))^\Diamond$

MPT | modal property theory

MPT = free second-order modal logic + ⋯

COMP $\exists X \Box \forall x (Xx \leftrightarrow \phi)$

PLEN_π $E!X \rightarrow \mathbb{G} \exists y \Box (y \equiv X)$ \equiv : coextensive attribute/property

PRI_π $\pi y \rightarrow \mathbb{P} \exists X \Box (y \equiv X)$

IND_π $\text{ind } x \rightarrow \mathbb{A} E!x$

$\text{ind } x := E!x \wedge \neg \pi x$

INT_π $E!x \wedge \Box(x \equiv y) \rightarrow x = y$

– **sound:** MPT ⊢ $\phi \Rightarrow w, \alpha \models \phi$

– can we take Kripke semantics seriously?

- **yes!** there is an intended hierarchy, $\langle W^*, d_\alpha^* \rangle$
- W^* and d_α^* are psets

Contingentist sets
oooooooo

Potentialist properties
ooooooo

Psets
●oooo

Objections
oooo

I. Contingentism and sets of possibilia

II. Potentialism and properties

III. Psets

IV. Objections and replies

Psets | stable properties

– pset := attribute that is ‘stable’

- $p \in P_\alpha$ is **stable** if for any $a \in D_{w,\alpha} \cap D_{u,\alpha}$:

$$a \in p(w) \text{ iff } a \in p(u)$$

- e.g. *being a person* – stable *being a philosopher* – non-stable

- object language: $\pi_* y := \pi y \wedge \Box \forall x (\Diamond x \ \eta \ y \rightarrow x \ \eta \ y)$

$$w, \alpha \models \pi_* p \text{ iff } p \in P_\alpha \text{ and } p \text{ is stable}$$

Psets | setlike properties

– **thm:** MPT interprets $\text{su}_\rho \sim \text{impure}(\text{Z} - \text{inf} + "V = \bigcup_\alpha V_\alpha")$

- define \cdot^u like \diamond -modalization, except:

$$(\mathbb{B}x)^u := \mathbb{E}\pi_* x \quad (x \in y)^u := \diamond x \eta y \wedge \mathbb{E}\pi_* y$$

- $\text{su}_\rho \vdash \phi$ implies MPT $\vdash \phi^u$

– **application:** psets of incompossibles

- recall me v. Tom:

$$\text{su}_\rho \vdash \forall a \forall b (\exists s s = \{a, b\}) \quad \text{MPT} \vdash \Box \forall a \Box \forall b (\exists s s = \{a, b\})^u$$

- $\sigma: x \mapsto \text{me}; y \mapsto \text{Tom}:$

$$\text{su}_\rho + \text{set of variables} \vdash \forall a \forall b (\exists \sigma: x \mapsto a; y \mapsto b)$$

$$\text{MPT} + \text{pset of variables} \vdash \Box \forall a \Box \forall b (\exists \sigma: x \mapsto a; y \mapsto b)^u$$

Psets | intended Kripke structures

– the ‘intended’ Kripke semantics goes beyond su_ρ (or ZFU):

– **intended initial frame:** $\langle W^*, d^* \rangle$

$$W^* = \{w : w \text{ is a world}\} \quad d^* : w \mapsto \{x : x \text{ is an individual at } w\}$$

– **Kripke semantics in MPT:**

- define $@w$ (cf. Fine, Reinhardt) and $@\alpha$ (cf. Studd)
- extend $(\cdot)^u$:

$$(w \text{ is a world})^u := \Diamond @w$$

$$(x \text{ is an individual at } w)^u := \Diamond (\text{ind } x \wedge @w)$$

– **prop:** $\text{MPT} \vdash (\forall \alpha \in \text{On} : \langle W^*, d_\alpha^* \rangle \text{ exists})^u$

– **thm:** $\langle W^*, d_\alpha^* \rangle$ -hierarchy captures intended interpretation:

$$@w, @\alpha \vdash_{\text{MPT}} \phi \leftrightarrow (w, \alpha \models \phi)^u$$

Psets | making sense of NNE-ist discourse

- **MPT:** constant-domain structures exist too – e.g.:

$(\langle W^*, w^*, D^* \rangle \models \text{NNE})^u$ w^* – actual world, $(D^* = \bigcup_w d^*(w))^u$

- is $\langle W^*, w^*, D^* \rangle$ intended?

sc-ist – **no!**

NNE-ist – **yes!**

- sc-ist: unintended but useful:

NNE-ist: ‘ $\phi!$ ’ **sc-ist:** ‘oh! – you mean: $(\langle W^*, w^*, D^* \rangle \models \phi)^u$ ’

- **NNE-ist:** ‘most possible individuals are never born’
- **sc-ist:** – you mean:

‘ $(\langle W^*, w^*, D^* \rangle \models \text{most possible individuals are never born})^u$ ’
– i.e. $(|D^* \cap N^*| > |D^* - N^*|)^u$

I. Contingentism and sets of possibilia

II. Potentialism and properties

III. Psets

IV. Objections and replies

Bad metaphysics? | ontological dependence

– bad metaphysics?

[OD-pset]: a pset exists only if its pmembers exist FALSE

- **OD-pset** stands/falls with **OD-att**:

[OD-att]: an attribute exists only if its possible exemplifiers exist

- clear failures: e.g. *being an individual*
- controversial: **OD-att** fails for ‘quidditative’ attributes

being me or being Tom exists (but Tom does not exist)

– **reply:** respectable conceptions make both

– potentialist ontological dependence: (cf. Priority)

[POD-set]: a set exists only if its plurality exists

[POD-att]: an attribute exists only if its property exists

– **OD-set** and **OD-att** turn on:

[OD-plu]: a plurality exists only if its members exist

[OD-pty]: a property exists only if its possible instantiators do

– ‘nothing over and above’: OD-plu holds (cf. Roberts)

– ‘mere intensions’: (cf. ‘minimalism’)

- if $\phi(x, a_1, \dots, a_n)$ has a well-defined intension, a unique property is necessarily coextensive with $\phi(x, a_1, \dots, a_n)$
- $\text{COMP} + \text{INT}_\pi \vdash \Box \forall X \Box \exists Y (Y = X)$
- assuming sc, **OD-pty** fails

Change the sets, change the subject?

– non-standard semantics?

- ersatz semantics: wrong subject matter
- why think switching sets for psets does better?

– reply: important difference v. ersatzism

- psets are proxy-sets of genuine possibilia – e.g.

ersatz semantics:

$me^*, Tom^* \in D^*$

$\forall x$ ranges over proxies

pset semantics:

$me, Tom \in D^*$

$\forall x$ ranges over possibilia

- semantics – standardly cast in set theory

– **but:** indifferent to ‘deeper’ nature of sets

MPT | SO modal logic

LPT = free SO logic + basic tense logic + s5 for \Box + $\Diamond E!x$ +

D: $\mathbb{G}\phi \rightarrow \mathbb{F}\phi$

H: $M\phi_1 \wedge M\phi_2 \rightarrow (M(\phi_1 \wedge \phi_2) \vee M(\phi_1 \wedge M\phi_2) \vee M(\phi_2 \wedge M\phi_1))$ $M = \mathbb{F}, \mathbb{P}$

LÖB: $\mathbb{P}\phi \rightarrow \mathbb{P}(\phi \wedge \mathbb{H}\neg\phi)$

CBF: $\mathbb{G}\forall x\phi \rightarrow \forall x\mathbb{G}\phi$

PR $\Box\mathbb{G}$: $\Box\mathbb{G}\phi \leftrightarrow \mathbb{G}\Box\phi$ sim. PR $\Box\mathbb{H}$

PR $\Diamond\mathbb{G}$: $\Diamond\mathbb{G}\phi \rightarrow \mathbb{G}\Diamond\phi$ sim. PR $\Diamond\mathbb{G}$, PR $\mathbb{F}\Box$, PR $\mathbb{P}\Box$

COMP $\exists X\Box\forall x(Xx \leftrightarrow \phi)$

- π is \uparrow -stable – as is η : (and Xx)

$$\mathbb{E}\pi x \wedge E!x \rightarrow \pi x \quad \mathbb{E}x \eta y \wedge E!x, y \rightarrow x \eta y$$

- $\forall X\exists Y(\pi_* Y \wedge Y \equiv X)$ (cf. Gallin)