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Contingentism
– is existence contingent or necessary?

Necessitism [nne-ism]: existence is necessary

□∀x□∃y(y = x)(nne)

Contingentism: existence is contingent

– motivation: apparently incompossible individuals

me v. Tom WWI v. GEP

– incmp(x,y) :=󲨙 ind(x)∧󲨙 ind(y)∧¬󲨙(E!x∧E!y)

– incompossibles motivate ‘strong contingentism’:

[sc-ism]: there could always be another individual

□∀xx󲨙∃y(ind(y)∧ y ∕≺ xx)(sc)
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Sets of possibilia | semantics 1
sc-ism: – semantic reflection motivates sets of possibilia:

Q: why is 󲨙∃x󲨙∃y incmp(x,y) true? (cf. Peacocke, Gupta)

– A: because there is a suitable assignment, e.g.

σ : x 󰀁→me y 󰀁→ Tom
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Sets of possibilia | semantics 2
– further motivation:

Q: how can we ‘make sense’ of the Goodman-Fritz sentence?

(GF) Most possible individuals are never born

– A: apply GQ semantics: e.g.

|D ∩N | > |D −N | D := set of possible individuals

N := set of never-borns

(D – set of ALL possible individuals)
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Sets of possibilia |metaphysics
– semantic reflection: motivates σ , D
– but: assuming sc-ism, there are no such sets

– because: ontological dependence

[OD-set]: necessarily, a set exists only if its elements exist

– assuming sc-ism:

D exists⇒OD-set all possible individuals exist⇒⊥
σ exists⇒zfu {me, Tom} exists⇒OD-set me and Tom exist⇒⊥

– what to do?

• non-standard semantics – avoid σ , D, etc.

• bad metaphysics – reject [OD-set]

• retain standard semantics without bad metaphysics?
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Strategy #1 | sets of proxy-possibilia

Ersatzism: (e.g. Plantinga, Jager, . . . )

• possible individual, x 󰀁→ x∗, actual proxy (e.g. being x)

• set of possibilia 󰀁→ set of proxies – e.g.:

σ∗ : x 󰀁→me∗, y 󰀁→ Tom∗

D∗ = set of proxy possible individuals

– bad metaphysics?

– non-standard semantics? – right TCs, wrong subject?

• sc-ist: ‘I exist contingently’

• Proxy semantics: being-me is contingently exemplified
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Strategy #2 | proxy-sets of possibilia

– Gupta hints at a different approach (1978, 465):
. . . even if our present conception of sets is such that on it
the set {Tom, You} does not exist there does not appear to be
any conceptual difficulty in introducing another conception
of sets according to which such sets do exist.

– my aim: provide such a conception of ‘set’
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– reductive proposal:

– proxy-sets or psets: (cf. Bealer: ‘L-determinate’)

• pset – set-like or ‘stable’ attribute (silent ‘p’)

• pmember: x ∈ p understood as 󲨙(x exemplifies p)

– example: pset of possible individuals:

D∗ = being an individual me ∈D∗ Tom ∈D∗

– plan:

• what is the underlying conception of properties?

• what makes psets setlike?

• what about non-standardness/badness objections?
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Russell’s paradox | properties and sets

Q: Which φ(x) specify a nominalized property
󰁿󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󰁾󰁽󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󰂀

type e

or attribute󰁿󲤊󲤊󲤊󲤊󲤊󰁾󰁽󲤊󲤊󲤊󲤊󲤊󰂀
type e

?

Naive A: any φ(x)! ≡: ‘coextensive’
• any φ(x) defines a

e→ t
󰁽󲤊󲤊󲤊󲤊󲤊󰂀󰁿󲤊󲤊󲤊󲤊󲤊󰁾
property: ∃X□∀x(Xx↔ φ(x))

• any property is nominalized: ∀X∃y□(y ≡ X) . . .⊥!

• set case: ∃xx∀x(x ≺ xx↔ φ)
󰁿󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󰁾󰁽󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󰂀

p-comp

+∀xx∃y(y ≡ xx)
󰁿󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󰁾󰁽󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󰂀

collapse

⊢ ⊥

Potentalist A (set case): (e.g. Parsons, Linnebo)
• any φ(x) defines a plurality: ∃xx∀x(x ≺ xx↔ φ)

• any plurality potentially forms a set: ∀xxE∃y(y ≡ xx)

• is a similar move available for properties?
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Potentialism | properties
– informally, properties are introduced stagewise:

– at each stage:

Comprehension: any φ(x) defines a property

Plenitude: each property is, at every later stage,
nominalized as a attribute

Priority: each attribute nominalizes some property
available at an earlier stage

Individuals: individuals are available at every stage

Intensionality: necessarily coextensive properties/attributes
are identical

– aim for this section:
• motivate a modal property theory – mpt
• to start with: using an extensional metatheory
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Properties | 〈W,dα〉-hierarchy

– iterative sets: “iteratively add all subsets”

U0 :=U U1 :=U ∪PU0 Uα :=U ∪
󰁞

β<α

PUβ

– iterative properties: “iteratively add all subintensions”

• stage 0: 〈W,d〉 W := the set of worlds d : w 󰀁→ d(w)

• p is an intension on 〈W,d〉 – or p ⊑ d – if:

p : w 󰀁→ p(w) p(w) ⊆ d(w)

• powerset analogue – πd := {p : p ⊑ d}

• stage 1: 〈W,d1〉 d1(w) := d(w)∪πd

• stage α: 〈W,dα〉 dα(w) := d(w)∪
󰁖

β<απdβ
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mpt | Kripke semantics
S ::= πx | x η y | Xx | x = y | ¬S | S→ S | ∀xS | □S |GS |HS

– boldface: x is x or X

– formulas evaluated at 〈w,α〉, w ∈W,α ∈On

• w,α: ∀x ranges over dα(w), ∀X over πdα

domain of ∀x
󰁽󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󰂀󰁿󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󰁾
dα(w) = d(w)∪Pα

properties nominalized at α
󰁽󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󰂀󰁿󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󰁾
Pα :=

󰁞

β<α

πdβ

outer dom.
󰁽󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󰂀󰁿󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󲤊󰁾
D :=

󰁞

w,α

dα(w)

– a,p,Q ∈D:

• w,α ⊨ πp iff p ∈ Pα ‘p is an attribute’

• w,α ⊨ a η p iff p ∈ Pα and a ∈ p(w) ‘a exemplifies p’

• w,α ⊨Qa iff Q ∈ πdα and a ∈Q(w)
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mpt |modal operators / modalization

• w,α ⊨Gψ iff ∀β > α: w,β ⊨ ψ ↑-operator
• w,α ⊨Hψ iff ∀β < α: w,β ⊨ ψ ↓-operator
• w,α ⊨ □ψ iff ∀v ∈W : v,α ⊨ ψ ↔-operator

• w,α ⊨Aφ iff ∀β ∈On: w,β ⊨ φ Aφ :=Hφ ∧φ ∧Gφ

• w,α ⊨ ⊡φ iff ∀〈u,β〉 ∈W ×On: u,β ⊨ φ ⊡ :=A□

• dual operators: E := ¬A¬, P := ¬H¬, etc.

– to speak of whole hierarchy: 󲩇-modalize

·󲩇: ∀ 󰀁→ ⊡∀, ∃ 󰀁→󲩇∃, atomic Φ 󰀁→󲩇Φ
• w,α ⊨ ∀xφ(x) iff, for every a ∈ dα(w), w,α ⊨ φ(a)
• w,α ⊨ (∀xφ(x))󲩇 iff, for every a ∈D, w,α ⊨ (φ(a))󲩇
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mpt |modal property theory

mpt = free second-order modal logic + · · ·

comp ∃X□∀x(Xx↔ φ)

plenπ E!X→G∃y□(y ≡ X) ≡: coextensive attribute/property
priπ πy→ P∃X□(y ≡ X)

indπ indx→AE!x indx := E!x∧¬πx
intπ E!x∧□(x ≡ y)→ x = y

– sound: mpt ⊢ φ⇒ w,α ⊨ φ

– can we take Kripke semantics seriously?

• yes! there is an intended hierarchy, 〈W ∗,d∗α〉
• W ∗ and d∗α are psets
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Psets | stable properties

– pset := attribute that is ‘stable’

• p ∈ Pα is stable if for any a ∈Dw,α ∩Du,α :

a ∈ p(w) iff a ∈ p(u)

• e.g. being a person – stable being a philosopher – non-stable

• object language: π∗y := πy ∧⊡∀x(󲨙x η y→ x η y)

w,α ⊨ π∗p iff p ∈ Pα and p is stable
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Psets | setlike properties

– thm: mpt interprets suρ ∼ impure (Z - inf + “V =
󰁖

αVα”)

• define ·u like 󲩇-modalization, except:

(ßx)u := Eπ∗x (x ∈ y)u :=󲩇x η y ∧Eπ∗y
• suρ ⊢ φ implies mpt ⊢ φu

– application: psets of incompossibles

• recall me v. Tom:
suρ ⊢ ∀a∀b(∃s s = {a,b}) mpt ⊢ ⊡∀a⊡∀b(∃s s = {a,b})u

• σ : x 󰀁→me; y 󰀁→ Tom:

suρ + set of variables ⊢ ∀a∀b (∃σ : x 󰀁→ a; y 󰀁→ b)

mpt+pset of variables ⊢ ⊡∀a⊡∀b (∃σ : x 󰀁→ a; y 󰀁→ b)u
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Psets | intended Kripke structures
– the ‘intended’ Kripke semantics goes beyond suρ (or zfu):

– intended initial frame: 〈W ∗,d∗〉
W ∗ = {w : w is a world} d∗ : w 󰀁→ {x : x is an individual at w}

– Kripke semantics in mpt:

• define @w (cf. Fine, Reinhardt) and @α (cf. Studd)

• extend (·)u:
(w is a world)u :=󲨙@w

(x is an individual at w)u :=󲨙(indx∧@w)

– prop: mpt ⊢ (∀α ∈On : 〈W ∗,d∗α〉 exists)u

– thm: 〈W ∗,d∗α〉-hierarchy captures intended interpretation:

@w,@α ⊢mpt φ↔ (w,α ⊨ φ)u

J. P. Studd Contingentist sets as potentialist properties 20



Contingentist sets Potentialist properties Psets Objections

Psets |making sense of nne-ist discourse

– mpt: constant-domain structures exist too – e.g.:

(〈W ∗,w∗,D∗〉 ⊨ nne)u w∗ – actual world, (D∗ = ∪wd∗(w))u

– is 〈W ∗,w∗,D∗〉 intended?

sc-ist – no! nne-ist – yes!

– sc-ist: unintended but useful:

nne-ist: ‘φ!’ sc-ist: ‘oh! – you mean: (〈W ∗,w∗,D∗〉 ⊨ φ)u’

• nne-ist: ‘most possible individuals are never born’

• sc-ist: – you mean:
‘(〈W ∗,w∗,D∗〉 ⊨most possible individuals are never born)u’

– i.e. (|D∗ ∩N ∗| > |D∗ −N ∗|)u
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Bad metaphysics? | ontological dependence
– bad metaphysics?

[OD-set]: a set exists only if its members exist TRUE

[OD-pset]: a pset exists only if its pmembers exist FALSE

– OD-pset stands/falls with OD-att:

[OD-att]: an attribute exists only if its possible exemplifiers exist

• clear failures: e.g. being an individual

• controversial: OD-att fails for ‘quidditative’ attributes

being me or being Tom exists (but Tom does not exist)

– reply: respectable conceptions make both

(i) OD-set hold (ii) OD-att fail (lots)
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– potentialist ontological dependence: (cf. Priority)

[POD-set]: a set exists only if its plurality exists

[POD-att]: an attribute exists only if its property exists

– OD-set and OD-att turn on:

[OD-plu]: a plurality exists only if its members exist

[OD-pty]: a property exists only if its possible instantiators do

– ‘nothing over and above’: OD-plu holds (cf. Roberts)

– ‘mere intensions’: (cf. ‘minimalism’)

• if φ(x,a1, . . . ,an) has a well-defined intension, a unique
property is necessarily coextensive with φ(x,a1, . . . ,an)

• comp+ intπ ⊢ □∀X□∃Y (Y = X)

• assuming sc, OD-pty fails
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Change the sets, change the subject?

– non-standard semantics?

• ersatz semantics: wrong subject matter

• why think switching sets for psets does better?

– reply: important difference v. ersatzism
• psets are proxy-sets of genuine possibilia – e.g.

ersatz semantics: pset semantics:
me󰂏 ,Tom󰂏 ∈D󰂏 me,Tom ∈D∗
∀x ranges over proxies ∀x ranges over possibilia

• semantics – standardly cast in set theory

– but: indifferent to ‘deeper’ nature of sets
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Appendix

mpt | SO modal logic
lpt = free SO logic + basic tense logic + s5 for □ + 󲩇E!x +

d: Gφ→ Fφ

h: Mφ1 ∧Mφ2→ (M(φ1 ∧φ2)∨M(φ1 ∧Mφ2)∨M(φ2 ∧Mφ1)) M = F ,P

löb: Pφ→ P(φ ∧H¬φ)

cbf: G∀xφ→∀xGφ

pr□G: □Gφ↔G□φ sim. pr□H

pr󲨙G: 󲨙Gφ→G󲨙φ sim. pr󲨙G, prF□, prP□

comp ∃X□∀x(Xx↔ φ)

• π is ↕-stable – as is η: (and Xx)

Eπx∧E!x→ πx Ex η y ∧E!x,y→ x η y

• ∀X∃Y (π∗Y ∧Y ≡ X) (cf. Gallin)
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